Rotational Dynamics
Recommended for grades 11–14.

Introduction
When you studied Newtonian dynamics you learned that when an object underwent some form of translational motion (whether in a straight line, parabolic, or circular path), the net force applied to the object is proportional to the acceleration. The constant of proportionality is the mass of the accelerating object. When a torque (the rotational analogue to force), is applied to an object that is free to rotate, the object will undergo rotational acceleration. In this experiment, you will investigate the relationship between torque and angular acceleration.
Objectives
In this experiment, you will
- Collect angular acceleration data for objects subjected to a torque.
- Determine an expression for the torque applied to a rotating system.
- Determine the relationship between torque and angular acceleration.
- Relate the slope of a linearized graph to system parameters.
- Make and test predictions of the effect of changes in system parameters on the constant of proportionality.
Sensors and Equipment
This experiment requires each of the following Vernier sensors and equipment (unless otherwise noted):
Additional Requirements
You may also need an interface and software for data collection. What do I need for data collection?
Download Experiment Preview
The student-version preview includes:
- Step-by-step instructions for computer-based data collection
- List of materials and equipment
Note: The experiment preview of the computer edition does not include essential teacher information, safety tips, or sample data. Instructions for Logger Pro and other software (such as LabQuest App or TI handheld software, where available) are on the CD that accompanies the book. We strongly recommend that you purchase the book before performing experiments.
Standards Correlations
No standards correlations for this experiment.


