Determining g on an Incline

Figure from experiment 4 from Physics with Vernier


During the early part of the seventeenth century, Galileo experimentally examined the concept of acceleration. One of his goals was to learn more about freely falling objects. Unfortunately, his timing devices were not precise enough to allow him to study free fall directly. Therefore, he decided to limit the acceleration by using fluids, inclined planes, and pendulums. In this experiment, you will see how the acceleration of a rolling ball or cart depends on the incline angle. Then, you will use your data to extrapolate to the acceleration on a vertical “incline;” that is, the acceleration of a ball in free fall.

If the angle of an incline with the horizontal is small, a cart rolling down the incline moves slowly and can be easily timed. Using time and position data, it is possible to calculate the acceleration of the cart. When the angle of the incline is increased, the acceleration also increases. The acceleration is directly proportional to the sine of the incline angle, θ. A graph of acceleration versus sin(θ) can be extrapolated to a point where the value of sin(θ) is 1. When sin(θ) is 1, the angle of the incline is 90°. This is equivalent to free fall. The acceleration during free fall can then be determined from the graph.

Galileo was able to measure acceleration only for small angles. You will collect similar data. Can these data be used in extrapolation to determine a useful value of g, the acceleration of free fall? We will see how valid this extrapolation can be. Rather than measuring time, as Galileo did, you will use a Motion Detector to determine the acceleration. You will make quantitative measurements of the motion of a cart rolling down inclines of various small angles. From these measurements, you should be able to decide for yourself whether an extrapolation to large angles is valid.


  • Use a Motion Detector to measure the velocity and acceleration of a cart rolling down an incline.
  • Determine the mathematical relationship between the angle of an incline and the acceleration of a cart rolling down the incline.
  • Determine the value of free fall acceleration, g, by using an extrapolation on the acceleration vs. sine of track angle graph.
  • Determine if an extrapolation of the acceleration vs. sine of track angle is valid.

Sensors and Equipment

This experiment requires each of the following Vernier sensors and equipment (unless otherwise noted):

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Download Experiment Preview

The student-version preview includes:

  • Step-by-step instructions for computer-based data collection
  • List of materials and equipment

Note: The experiment preview of the computer edition does not include essential teacher information, safety tips, or sample data. Instructions for Logger Pro and other software (such as LabQuest App or TI handheld software, where available) are on the CD that accompanies the book. We strongly recommend that you purchase the book before performing experiments.

Download Preview

Standards Correlations

See all standards correlations for Physics with Vernier »

Experiment 4 from Physics with Vernier Lab Book

<i>Physics with Vernier</i> book cover

Order Codepwv


Go to Book

Included in the Lab Book

Vernier lab books include a CD with word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Get free experiments, innovative lab ideas, product announcements, software updates, workshop schedule, and grant resources. Join our mailing list »
© 2015 Vernier Software & Technology, LLC. All rights reserved.
Prices shown are valid only for United States. Change Location »