Bungee Jump Accelerations
Recommended for grades 9–12.
Introduction
In this experiment, you will investigate the accelerations that occur during a bungee jump. The graph below records the acceleration vs. time for an actual bungee jump, where the jumper jumped straight upward, then fell vertically downward. The positive direction on the graph is upward.
For about the first 2 seconds, the jumper stands on the platform in preparation for the jump. At this point the acceleration is 0 m/s2. In the next short period of time, the jumper dips downward then pushes upward, both accelerations showing up on the graph. Between about 2.5 seconds and 4.5 seconds, the jumper is freely falling and the acceleration is near – 9.8 m/s2.
Objectives
- Use an Accelerometer to analyze the motion of a bungee jumper from just prior to the jump through a few oscillations after the jump.
- Determine where in the motion the acceleration is at a maximum and at a minimum.
- Compare the laboratory jump with an actual bungee jump.
Sensors and Equipment
This experiment requires each of the following Vernier sensors and equipment (unless otherwise noted):
Additional Requirements
You may also need an interface and software for data collection. What do I need for data collection?
Download Experiment Preview
The student-version preview includes:
- Step-by-step instructions for computer-based data collection
- List of materials and equipment
Note: The experiment preview of the computer edition does not include essential teacher information, safety tips, or sample data. Instructions for Logger Pro and other software (such as LabQuest App or TI handheld software, where available) are on the CD that accompanies the book. We strongly recommend that you purchase the book before performing experiments.

