From Here to There - Applications of the Distance Formula
Recommended for grades 9–12.

Introduction
Many problems in applied mathematics involve finding the distance between points. If we know the coordinates of a pair of points (x1, y1) and (x2, y2), it is easy to find the distance between them by using the distance formula, which is a restatement of the Pythagorean Theorem.
In this activity you will use a pair of Motion Detectors. They will record the Cartesian x, y coordinates of a rod moving in a star-shaped pattern. The data collected by the detectors will be used to test the distance formula.
Objectives
- Record the x- and y-coordinates of a rod moving in a star pattern.
- Use the recorded coordinates to calculate the distances moved between the vertices of the star.
- Compare the calculated distances with direct measurement on the star pattern.
Sensors and Equipment
This activity requires each of the following Vernier sensors and equipment (unless otherwise noted):

Motion Detector (2)
Additional Requirements
You may also need an interface and software for data collection. What do I need for data collection?
Download Experiment Preview
The student-version preview includes:
- Step-by-step instructions for computer-based data collection
- List of materials and equipment
Note: The experiment preview of the computer edition does not include essential teacher information, safety tips, or sample data. Instructions for Logger Pro and other software (such as LabQuest App or TI handheld software, where available) are on the CD that accompanies the book. We strongly recommend that you purchase the book before performing experiments.
Standards Correlations
See all standards correlations for Real-World Math with Vernier »
