Making Cents of Math: Linear Relationship between Weight and Quantity
Recommended for grades 9–12.

Introduction
The slope of a line describes its steepness. The numerical value of the slope can represent a number of other important mathematical concepts. Given any two points on a line, (x1, y1) and (x2, y2), the slope of that line can be computed using the formula:
where m represents the slope of the line, x1 and x2 represent the independent variable coordinates, and y1 and y2 represent the dependent variable coordinates.
In this activity you will use a Force Sensor to collect a linear set of data points. Specifically, you will measure the weight of 8, 16, 24… pennies. You will then analyze this data and interpret the meaning of the slope as it relates to the independent and dependent variables. A model will help you predict future measurements and interpret past results.
Objectives
- Collect weight versus number data for a collection of identical pennies.
- Model the weight versus number data using a linear equation.
- Interpret the slope and intercept values from the linear model.
Sensors and Equipment
This activity requires each of the following Vernier sensors and equipment (unless otherwise noted):
Additional Requirements
You may also need an interface and software for data collection. What do I need for data collection?
Download Experiment Preview
The student-version preview includes:
- Step-by-step instructions for computer-based data collection
- List of materials and equipment
Note: The experiment preview of the computer edition does not include essential teacher information, safety tips, or sample data. Instructions for Logger Pro and other software (such as LabQuest App or TI handheld software, where available) are on the CD that accompanies the book. We strongly recommend that you purchase the book before performing experiments.
Standards Correlations
See all standards correlations for Real-World Math with Vernier »

