Just for Fun - Word Search

Find the words hidden below reading forward, backward, up, down, and diagonally.

ANGLE MAGNET
ATTRACT MARS
BATTERY REPEL
CIRCUMFERENCE RESISTOR
COMPASS ROTATION

CURRENT SEMICONDUCTOR

DATA SOLAR DIRECTION VOLTAGE

R W S B T G Y M K Z D B L U Y R D M I U K W X C I K B W S C N J A V A J P F R R X L J E O C I R C U M F E R E N C E M M M M N S Z W I C A M L O T T I P L Y O R O T S I S E R N E C A K G J I I K L D C F E B L O S X E B O T E N U A I V L G N S D T N A P A R X B T F B N D Q J A E E T R T M U P A M A U V T R R N E T A O A T T R A C T C T G N G Y E K R P R C T T C O S T N S A E R E G A T L O V B F F S E T M G Y S O L A R D P P L P Q L F P O B M X B A V

What do planets like to read?

Answer: comet books

LEGO Engineering with Vernier: Electricity & Magnetism on Mars

Engineering Notebook

Curiosity Rover on Mars Gale Crater

- >> Navigation: In 2012, NASA sent the Curiosity rover to Mars to search for past life embedded in the rocky plains. The rover established an operations' base in Yellowknife Bay, a clay-rich lakebed in the center of Gale Crater chosen for its abundance of magnetite.
- >> System Status: Critical

Two NASA astronauts have been stranded on Mars while attempting a routine mission to service the rover. A sudden storm has covered their solar panels in dust and most of their backup batteries have run down.

>> Mission Task: Build a robot to retrieve the stranded astronauts, replace the dead batteries with fresh ones, remove the dust from the solar panels, and find the magnetic rocks scattered near the base station.

Mission Specialist #1:_	
Mission Specialist #2:	

Vernier

Measure. Analyze. Learn. Vernier Software & Technology

13979 S. W. Millikan Way • Beaverton, OR 97005-2886
Toll Free (888) 837-6437 • (503) 277-2299 • FAX (503) 277-2440
info@vernier.com • www.vernier.com

Martian Challenge

es	cribe your strategy for solving this challenge:
-	
_	
_	
_	
-	
_	
-	
_	
-	
_	
-	
	Where would an astronaut park his space ship? Answer: a parking meteor

3.	How do seasons affect the power of a solar cell? _				
4.	How does geographic location affect the power of a				
	solar cell?				
	What did the solar cells say to their cloudy boss? Answer: We need rays.				

Just for Fun - Sudoku

5			6	7			9	2
		6	9	5		7	8	
	7	8			4			6
	9			8	5	3		1
8			4		2			9
1		2	3				7	
3			8			1	6	
4		1		6	9	2		
	6			2	3			8

Exploring wars
Name 3 facts about Mars:
•
•
•
Why should we explore Mars?
What is a spaceman's favorite chocolate? Answer: a Mars bar
Aerospace Engineering
Describe the duties of an aerospace engineer:
What do you call a loony spaceman?

Answer: an astronut

Magnets

1. Draw a bar magnet and label its poles.

2.	When I	push the same poles together	

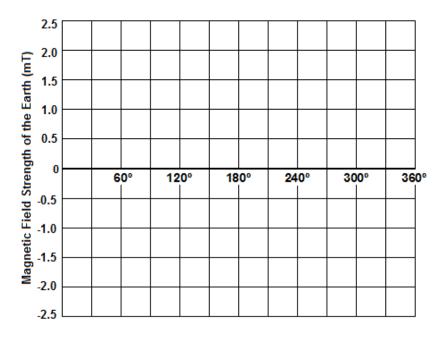
3. When I push opposite poles together _____

4. When I bring the north pole of one magnet near the middle of a second magnet _____

5. When I bring a magnet near a plastic paperclip _____

6. When I bring a magnet near a metal paperclip _____

7. The longest paperclip chain I can make is _____


Solar Cells

1. Solar panels have one red wire and one black wire.

Data Log #5: Solar Cell Voltage					
Date: Time of day:					
Orientation angle	Single cell measured potential	Double cell measured potential			
0°	V	V			
15°	V	V			
30°	V	V			
45°	V	V			
60°	V	V			
75°	V	V			
90°	V	V			

2.	How	does	angle	affect	the p	ower	of a	solar	cell?	
					-					

10. Sketch the graph of the magnetic field strength around the Earth. Label the peaks and valleys.

	11.	These types	of graphs are	e called	
--	-----	-------------	---------------	----------	--

12. What conclusion can you draw about the Earth's	
magnetic field and compasses?	

Where is it always 90 degrees, but never hot?

Answer: The North and South Poles.

Data Log #1: Magnetic Scavenger Hunt				
Objects that are attracted	Objects that are not attracted			

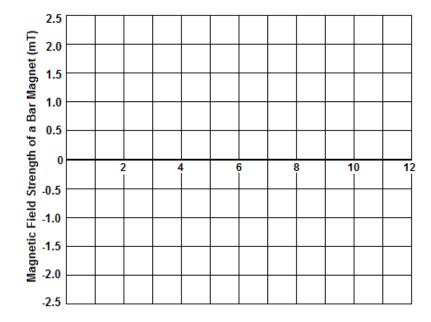
3.	What conclusion can you draw about magnets?		

9. Draw a disc magnet and label its poles. Record the sensor readings for the top and bottom faces of the disc.

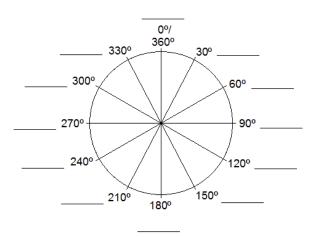
What did one magnet say to the other magnet on Valentine's Day?

Answer: I'm attracted to you.

Batteries

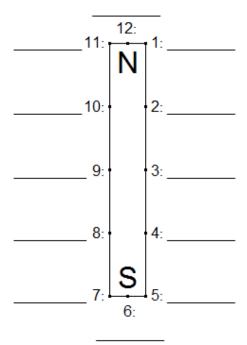

1. Draw a battery and label its terminals.

2. What is electric potential? _____


Data Log #2: Battery Size				
Battery type	Predicted potential	Measured potential	Voltage printed on battery	
AAA	1.5 V	V	V	
AA	\	V	V	
С	\	V	V	
D	V	V	V	

3. What conclusion can you draw about battery size? ___

8. Plot your magnetic field strength measurements on the graph below. Draw a smooth line through the points and label the peaks and valley.


9. Measure the magnetic field strength around the classroom.

5. Sketch the pattern made by iron filings placed over a north pole and a south pole.

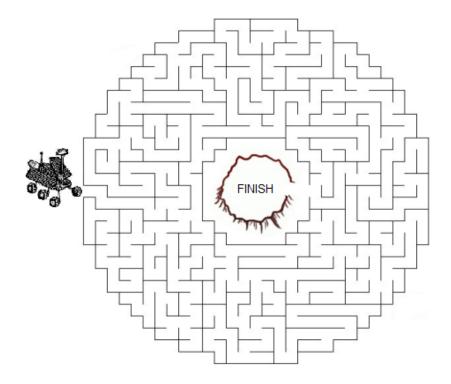
- 6. The length of the magnetic field between a paper clip and my magnet is _____
- 7. Measure the magnetic field strength around a single bar magnet.

Data Log #3: Stacked Batteries					
Battery Type:					
Number of batteries	Predicted potential	Measured potential			
1	1.5 V	V			
2	V	V			
3	V	V			
4	V	V			

4.	When I stack batteries together			

5. If I stack 10 batteries together, the electric potential would be _____

Data Log #4: Battery Status Battery size:				
alpha	V			
beta	V			
gamma	V			
delta	V			


6. The minimum voltage for a "good" battery is _____

Why was the battery always in trouble?

Answer: Because it didn't know how to conduct itself properly.

Just for Fun - Maze

Help Curiosity find the path to Gale Crater.

Compasses

1. Draw a compass and label the four cardinal and four intercardinal directions.

- 2. When I place a compass near a magnet _____
- 3. Sketch the pattern made by iron filings placed over a bar magnet.

4. Sketch the pattern made by iron filings placed over two north poles.

