
Activities for the Wireless Dynamics 
Sensor System 

Revised with permission from activities by Chris Butlin 

This booklet contains seven activities using the Vernier Wireless Dynamic Sensor 
System (WDSS) and Vernier Logger Pro software for collecting, displaying, printing, 
graphing, and analyzing data. Many of the data-collection features of the WDSS are 
illustrated in these activities, providing a foundation to explore accelerations, forces and 
their interrelationships. 

The WDSS is a Bluetooth® wireless combination sensor that contains a three-axis 
accelerometer, a dual-range force sensor, and an altimeter. The experiments in this 
booklet make use of the wireless feature of the WDSS, providing opportunities to study 
physics principals without the added complication that comes from friction due to wired 
sensors. 

 
Each activity contains a student section that can be reproduced and distributed when 
doing the activities. The extensive Teacher Information section includes sample results, 
answers to questions, directions for preparing equipment, useful web sites, and other 
helpful hints regarding the planning and implementation of a particular experiment. 
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WDSS Bungee Jumper 
Bungee jumping as we know it today started when the Oxford Dangerous Sports Club 
made a jump from the Clifton Suspension Bridge in Bristol back in April 1979. However, 
the origin of such jumps goes back centuries to the ‘land divers’ of Pentecost Island, one 
of the many islands making up Vanuatu north east of Australia. These ‘land jumpers’ 
used vines to support their jumps. Since 1979 bungee jumping has become very popular. 
Jumps can be from bridges, towers, cranes and balloons. You might even recall seeing 
such a jump in the Bond film Golden Eye which, in 2002, was voted the best movie stunt. 

The bungee cords are specially made for the task and are designed to stretch to two, three 
or even four times their original length. There are two main types, sheathed (often called 
shok or mil-spec) and all-rubber. The former have a rubber core encased in a cotton or 
nylon sheath and, depending on the weight of the jumper, between three and six of these 
would be bundled together. The all-rubber cords are made up of over one thousand 
individual strands of rubber tied together to form one solid core. 

    
Figure 1 – Beginning the fall 

(Photograph courtesy Glyn Jones) 
Figure 2 –WDSS attached to a bungee 

 
The physics of bungee jumping is all about competing forces and the resulting 
acceleration of the jumper. As the jumper leaves the platform and begins to fall, the 
predominant force is from gravity, and the jumper is nearly in freefall. Initially the 
gravitational force accelerates the jumper downward. As the bungee cord goes taut, it 
begins applying a force opposing that of gravity; at some point the cord's force balances 
the gravitational force. The jumper continues to fall, however, further increasing the 
cord's force. The acceleration is then upward. At the jumper's nadir the cord is applying a 
force much larger than the gravitational force. As the jumper then rises, the cord may go 
slack, and the jumper is again in freefall. When the jumper falls far enough to make the 
cord taut, the cycle begins again. Eventually the motion dies down due to air resistance 
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and non-conservative forces in the bungee cord. 

Modeling a bungee jump is not difficult to do once a good match has been found between 
a length of rubber cord and whatever is to do the ‘jump’ – in this activity the WDSS. 

 
OBJECTIVES 
In this activity, you will investigate 

• how the acceleration of a bungee jumper changes during a jump. 
• how the scalar acceleration is related to the individual accelerations during a 

bungee jump. 
 
 
MATERIALS

Bluetooth® equipped computer ring stand and right angle clamp 
Logger Pro Software extra ring stand rod 
Vernier Wireless Dynamics Sensor System c-clamp 
bungee cord (long flexible rubber band)  

 
 
PROCEDURE 
Setting up your WDSS 

1. Turn on the WDSS. Note the name on the label of the device. 

2. Make sure Bluetooth is activated on your computer. Some computers have Bluetooth 
built into them. If that is the case, make sure Bluetooth is turned on. 

3. Start Logger Pro. 

 4. Establish a wireless connection with the WDSS. 
a. Choose Connect Interface from the Experiment menu. Choose Wireless and then 

Scan for Wireless Device.  
b. There will be a short delay while Logger Pro attempts to establish a connection. If 

the WDSS is not found, try scanning again.  
c. A dialog box will appear showing your WDSS on the list of available devices. 

Select your WDSS device and then click . Once a connection is made, the 
two LEDs on the WDSS will be lit green. 

 
5. Open the file “Scalar Acceleration” in the Probes & Sensors/WDSS folder. 
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6. Choose Data Collection from the Experiment menu. 
Adjust the data collection experiment length to 10 
seconds with a sampling rate of 200 samples/second as 
shown in Figure 3. 

The Bungee Jump 

7. Attach the bungee to the hook on the WDSS, so that the 
x-axis acceleration arrow points towards the floor. 

8. Attach the other end of the bungee cord to the ring 
stand support rod. Adjust the length of the rubber cord 
so when the WDSS is dropped from the height of the 
support rod, it does not hit the floor. 

Figure 3 
9. Collect acceleration data. 

a. Hold the WDSS by the hook connected to the bungee. 
The x-axis acceleration arrow should be pointing 
towards the floor as shown in Figure 4.  

b. Bring the hook up even with the ring stand support rod.  
c. Click  to begin data collection. Wait about one 

second then release the WDSS. 
 
 
QUESTIONS 
1. Describe the key features of the acceleration-time graphs 

for each axis of the accelerometer.  

2. Describe the key features of the scalar acceleration-time 
graph. How does this graph compare to the other 
acceleration vs. time graphs? 

 
Figure 4 
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TEACHER INFORMATION  

WDSS Bungee Jumper  
1. A bungee jump provides an excellent opportunity to let students see a link between 

force and acceleration, assuming that they first have an understanding of what each 
means. 

2. Here are a number of web sites with information on the technology of bungee 
jumping, its history, some fantastic images and the physics involved. 

• Reporter’s Notebook: South Pacific Ritual Bungee Jumping – This is a news 
report on the land diving ritual, the Naghol, performed on Pentecost Island, one of 
many making up Vanuatu. 
http://news.nationalgeographic.com/news/2002/11/1125_021126_TVVanuatu.html

• Steve Fettke Bungee Jumping – This site contains lots of bungee facts, details 
about the equipment used, photographs, and videos. 
http://www.fettke.com/bungee/equip.htm

• The Oxford Stunt Factory – This organization performed the bungee jump shown 
in the Bond movie Golden Eye. Images of this and other stunts are available here. 
http://www.oxfordstuntfactory.com/html/stunts.htm

• Vertige Aventures – This company manufactures bungee ropes and provides 
information on their construction. 
http://www.bungee-jump.com/xvms.htm

 
3. The bungee cord needs to be selected for reasonable elasticity. The rubber cord used 

in a paddle-ball toy works well for this experiment. You can also create a cord by 
connecting several smaller rubber bands together. 

4. When discussing the accelerometer reading, it is proper to refer to it as a measure of 
Normal Force per Unit Mass, with units of N/kg, where “normal” is in the direction 
of that particular accelerometer. This is what the accelerometer is actually measuring. 
(Note that it is not the net force per unit mass which would be acceleration.) A 
motionless accelerometer oriented in the vertical direction will give a reading of 
+9.8 N/kg when pointed up and –9.8 N/kg when pointed down. A motionless 
accelerometer oriented in the horizontal direction will read 0 N/kg. An accelerometer 
in freefall will give a value of 0 N/kg regardless of its orientation. Since most people 
prefer the measurement be in m/s2, we have used these units in this manual.  
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SAMPLE RESULTS 

      

      
WDSS Bungee Jumper (x-axis, y-axis, z-axis, and Scalar acceleration) 

 
ANSWERS TO QUESTIONS 
1. Most of the acceleration is along the x-axis. While the WDSS is in free fall, all 

accelerations are zero. 

2. The students should note the periodicity of the oscillations and the damping effect. 
They should also note that the scalar acceleration is only positive and represents the 
scalar sum of the individual accelerations. 
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Centripetal Accelerations on a Model 
Centrifuge 

In normal circumstances, you experience +1g of acceleration as a result of Earth’s 
gravitational field. You get the same effect when you are accelerated at 9.8 m/s2. To 
produce larger g-forces (+2g to +9g) you would need larger accelerations (19.6 to 88.2 
m/s2). The easiest way to produce such accelerations is by rotation in a centrifuge. 
Astronauts and cosmonauts, as part of their training, are exposed to accelerations and g-
forces they might have to experience during their space flights. QinetiQ at Farnborough 
have a man-carrying centrifuge (see Figure 1) that produces such accelerations and g-
forces up to +8g. Dr. Gregory Olsen, the American scientist who paid $20 million to visit 
the International Space Station (ISS) in October 2005, trained on it before being launched 
into space aboard a Russian Soyuz spacecraft.  

 
 

Figure 1 – The man-carrying centrifuge at Farnborough 
(Image courtesy of QinetiQ) 

 
The average person can withstand around +5g before blacking out or experiencing g-loc 
(loc stands for loss of consciousness). You can momentarily experience ±5g of force on 
various roller-coaster rides. Trained astronauts, cosmonauts, and fighter pilots can cope 
with up to +9g.  

In this activity you will model a centrifuge using an old record-player turntable. The 
record player turntable can provide rotational speeds of 16⅔, 33⅓, 45, and 78 revolutions 
per minute (rpm). Calculating the centripetal acceleration, the acceleration necessary to 
keep an object moving in a circular path, can be done using the formula: 

2

2

)(
4

revolution
lcentripeta t

Ra π
=  

where R is the radius of the circular path, and trevolution is the time for one revolution 
(measured in seconds). 
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Figure 2 – Turntable set up to measure centripetal acceleration 

 
OBJECTIVES 
In this activity, you will 

• measure the centripetal acceleration of a record turntable. 
• compare the measured accelerations to the theoretical accelerations. 

 
 
MATERIALS

Bluetooth® equipped computer turntable (with 33⅓, 45, and 78 rpm  
Logger Pro Software settings) 
Vernier Wireless Dynamics Sensor System masking tape 
phonograph record level 

 
 
PROCEDURE 
Establish a connection to your WDSS 

1. Turn on the WDSS. Note the name on the label of the device. 

2. Make sure Bluetooth is activated on your computer. Some computers have Bluetooth 
built into them. If that is the case, make sure Bluetooth is turned on. 

3. Start Logger Pro. 

 4. Establish a wireless connection with the WDSS. 
a. Choose Connect Interface from the Experiment menu. Choose Wireless and then 

Scan for Wireless Device.  
b. There will be a short delay while Logger Pro attempts to establish a connection. If 

the WDSS is not found, try scanning again.  
c. A dialog box will appear showing your WDSS on the list of available devices. 

Select your WDSS device and then click . Once a connection is made, the 
two LEDs on the WDSS will be lit green. 
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Sensor and Data Collection Setup 

5. Choose Set Up Sensors from the Experiments menu and 
then select your WDSS device. This will display the 
WDSS setup dialog that will allow you to turn sensors on 
or off. Set up the sensors as indicated in Figure 3. 

6. Choose Data Collection from the Experiment menu. 
Adjust the data collection experiment length to 60 
seconds with a sampling rate of 200 samples/second. 

7. Place the WDSS on a level surface with the power switch 
located at the top. Click  to zero the sensor.   

Collecting Data 

 8. Set up the experiment. 
a. Place the turntable on a level surface. Check to make sure that th

is horizontal using a level.  
b. Place a phonograph record on the turntable. 
c. Position the WDSS so that two of the corners are at the edge of t

the x-axis acceleration arrow is pointing towards the center of tur
WDSS with tape. 

d. Set the turntable speed to 33⅓ rpm. 
 

 9. You are now ready to collect data for the three different angular spe
turntable. 
a. Click  to begin data collection.  
b. Wait about 5 seconds then turn on the turntable.  
c. Wait an additional 15 seconds then increase the speed of the turn
d. Wait an additional 15 seconds then increase the speed to 78 rpm.
e. Wait an additional 15 seconds then turn the turntable off. 
f. Wait for data collection to finish. 

 
 10. Once the turntable has stopped rotating, measure the distance (in me

center of the accelerometer label on the WDSS to the center of the t
this value in the table provided. 

 
DATA TABLE 

Angular Speed 
(rpm) 

Average Centripetal 
(m/s2) 

33⅓  

45  

78  
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Radius (m)  

Angular Speed 
(rpm) 

Time for one Revolution 
(s) 

Theoretical Centripetal 
Acceleration 

(m/s2) 

33⅓   

45   

78   

 
 
QUESTIONS 
1. What are the average values of the x-axis acceleration for each speed of rotation? 

Record these values in the table provided. 

2.  For each angular speed, calculate the time for one revolution in seconds. 

3. Calculate the centripetal accelerations expected with each of the turntable speeds. 
How do these values compare to the average accelerations you measured? 

4. In terms of the g-factor, what is the greatest g-factor achieved in this activity? (Note: 
a centripetal acceleration of +9.8 m/s2 is equivalent to +1g.) 

5. How might you increase the maximum g-factor on this turntable without increasing 
its angular speed? 
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TEACHER INFORMATION  

Centripetal Accelerations on a Model 
Centrifuge 

1. Special thanks to QinetiQ of Cody Technology Park, Farnborough, Hampshire, UK, 
for providing the photograph of their man-carrying centrifuge. 

2. The man-carrying centrifuge is a piece of equipment that was used in the James Bond 
film Moonraker. Hugo Drax, the villain, tried to kill 007 by accelerating him beyond 
the level of human endurance. 

 3. Web sites with information on both acceleration and centripetal acceleration. 
• Wikipedia – this site provides an explanation of what is meant by “g” and why its 

value is as it is. Details are provided of situations in which one can experience both 
high positive and negative g forces, as well as 0g.  
http://en.wikipedia.org/wiki/Acceleration_due_to_gravity  

• Aerodynamics and G forces – this site discusses G forces experienced by F-16 
fighter pilots and the effects on them. 
http://www.voodoo.cz/falcon/agf.html

• Dream comes true with space flight – this site provides a transcript of a discussion 
with Dr. Greg Olsen following his trip to the International Space Station in 2005. 
http://newstranscript.gmnews.com/news/2006/0125/Front_Page/001.html

• QinetiQ helps ‘space tourist’ Greg Olsen pass the physical – this site provides a 
report on the training provided for Dr. Greg Olsen in QinetiQ’s man-carrying 
centrifuge. 
http://www.qinetiq.com/home/newsroom/news_releases_homepage/2005/3rd_quart
er/qinetiq_helps__space.html  

• QinetiQ’s Centrifuge – this site provides a video of the QinetiQ centrifuge in 
action. 
http://www.qinetiq.com/home/technologies/technologies/Sub_Landing1/facilities/c
entrifuge.html  

 
4. When discussing the accelerometer reading, it is proper to refer to it as a measure of 

Normal Force per Unit Mass, with units of N/kg, where “normal” is in the direction 
of that particular accelerometer. This is what the accelerometer is actually measuring. 
(Note that it is not the net force per unit mass which would be acceleration.) A 
motionless accelerometer oriented in the vertical direction will give a reading of  
+9.8 N/kg when pointed up and –9.8 N/kg when pointed down. A motionless 
accelerometer oriented in the horizontal direction will read 0 N/kg. An accelerometer 
in freefall will give a value of 0 N/kg regardless of its orientation. Since most people 
prefer the measurement be in m/s2, we have used these units in this manual.  

5.  The acceleration graph will probably show a cyclic time variation. This once-around 
variation in the acceleration value is likely to be due to the record wobbling or the 
turntable not being level.  
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SAMPLE RESULTS 

   
Centripetal acceleration data   Average acceleration at 33 ⅓ rpm 

 

   
Average acceleration at 45 rpm   Average acceleration at 78 rpm 

 
 

Angular Speed 
(rpm) 

Average Centripetal Acceleration 
(m/s2) 

33⅓ 1.10 

45 1.95 

78 5.57 
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Radius (m) 0.085 

Angular Speed 
(rpm) 

Time for one Revolution 
(s) 

Theoretical Centripetal 
Acceleration 

(m/s2) 

33⅓ 1.80 1.04 

45 1.33 1.89 

78 0.77 5.66 

 
 
ANSWERS TO QUESTIONS 
1. See Table 

2. See Table 

3. See Table. The values are in close agreement. 

4. 0.78 g 

5. Position the WDSS further away from the center of the turntable. 
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Mission to Titan – Investigating 
Surface Composition 

The Cassini-Huygens mission to Saturn and its moons began back in October 1997 with a 
launch from Cape Canaveral. Seven years later on Thursday, July 1, 2004, the Cassini 
orbiter with its Titan probe Huygens (see Figure 1), went into orbit around Saturn. On 
Christmas Day 2004 the 318 kg Huygens probe was released from the orbiter and entered 
Titan’s atmosphere on January 14, 2005, landing shortly afterwards on this moon’s 
surface. The Huygens probe, named after the Dutch physicist and astronomer Christiaan 
Huygens (1629 – 1695) who discovered Titan in 1655, was designed to investigate 
Titan’s atmosphere and surface. One experiment involved investigating the composition 
of Titan’s surface. As the Huygens probe made contact with the surface of Titan, a force 
sensor (or penetrometer) collected data that was to give scientists an idea of the 
composition of Titan’s surface. A graph of this data is show in Figure 2.  

   
 

Figure 1 
Courtesy Planetary and Space Sciences 
Research Institute, The Open University, 

Milton Keynes, UK 
 
 

Figure 2 
Courtesy Rutherford Appleton 

Laboratory Space Electronics Group 
and the Planetary and Space Sciences 

Research Institute at the Open 
University 

 
 
In this activity, you will create a penetrometer using the force probe on the WDSS. Your 
task will be to generate model graphs of various surfaces that you will compare with the 
data received from the Huygens’ probe to form a hypothesis as to the surface composition 
of Titan. 
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OBJECTIVES 
In this activity, you will 

• Collect force-time data for a penetrometer impacting various simulated surface 
conditions. 

• Develop a hypothesis based on your research as to the composition of Titan’s 
surface at the location where the Huygens probe landed. 

 
MATERIALS  

Bluetooth® equipped computer soil container (at least 10 cm deep) 
Logger Pro Software sample soils – clay, fine gravel, fine grit, 
Vernier Wireless Dynamics Sensor System and sand 

10 cm length of PVC pipe (should allow burette clamp 
Wooden dowel to slide freely inside)  metric ruler 

35 cm wooden dowel (3/8”) with bolt glued clothes pin 
to the end (1” bolt (1/4 – 20 thread)) ring stand 

 
PROCEDURE 
Establish a connection to your WDSS 

1. Turn on the WDSS. Note the name on the label of the 
device. 

2. Make sure Bluetooth is activated on your computer. Some 
computers have Bluetooth built into them. If that is the 
case, make sure Bluetooth is turned on. 

3. Start Logger Pro. 

 4. Establish a wireless connection with the WDSS. 
a. Choose Connect Interface from the Experiment menu. 

Choose Wireless and then Scan for Wireless Device.  
b. There will be a short delay while Logger Pro attempts to 

establish a connection. If the WDSS is not found, try 
scanning again.  

c. A dialog box will appear showing your WDSS on the 
list of available devices. Select your WDSS device and 
then click . Once a connection is made, the two 
LEDs on the WDSS will be lit green. 

 

Figure 3

Sensor and Data Collection Setup 

5. Choose Set Up Sensors from the Experiments menu and then select your WDSS 
device. Set up the WDSS sensors to use only Force. 

6. Click  below the force sensor and select Reverse Direction. This will make 
the force sensor report positive values for forces that push the bumper towards the 
sensor. 

7. Choose Data Collection from the Experiment menu. Adjust the data collection 
experiment length to 500 milliseconds with a sampling rate of 1 samples/millisecond. 
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Also, uncheck the Sample at Time Zero box if it is s

Figure 4

elected.  

8. Click on the Triggering tab and set up the WDSS to trigger 

The Simulated Landings 

g to the ring stand using the burette 

10. Screw the bumper into the force sensor end of the WDSS. 

the 

11. Fill the soil container 10 cm deep with the first test soil. (Since you will be testing all 

12.  Click 

and begin recording data when the force increases above 
0.1 N as indicated in Figure 4. 

9. Attach the PVC tubin
clamp. Be sure the tubing is directly above the base of the 
stand. Insert the wooden dowel into the PVC tubing with 
the threaded end pointing down towards the ring stand 
base. 

Thread the WDSS onto the wooden dowel using the 
mounting hole at the end opposite the bumper. Align 
bumper so it is centered above the base of the ring stand. 
Raise the WDSS as high as it can go and hold it in place 
with the clothes pin. 

four types of soil, it does not matter which is done first.) Place the soil container on 
the base of the ring stand so the container is centered directly below the WDSS. 

 to zero the force sensor.  

13. Hold the wooden dowel and remove the clothes pin. Click  to prepare the 
ger 

14. Study the force-time graph (impact signature) carefully. Pay close attention to how 

ics 

15. Repeat Steps 11 – 14 using the other three soil samples. 

QUESTIONS 
l impact signature for each of the soils you tested. Label the key 

2. Review the Huygens’ probe data. Based on the results of your tests, hypothesize as to 

3. Describe the limitations of this procedure for determining the composition of Titan’s 

4. Describe changes to this experiment and additional tests you would recommend to 

WDSS for data collection. (The graph will display the message “Waiting for Trig
or Data…”) Release the dowel and allow the WDSS to impact the soil sample. When 
data collection is complete, raise and secure the WDSS to its highest position with the 
clothes pin. 

the impact force changes with time and how fast the changes take place. You may 
want to repeat Step 12 – 13 several times to be sure you understand the characterist
of the impact signature for this type of soil. Save at least one of your force-time 
graphs by choosing Store Latest Run from the Experiments Menu. 

1. Sketch a typica
features of the graphs. 

the composition of the soil on Titan. Defend your hypothesis. 

soil at the location of impact. 

test your hypothesis. 
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TEACHER INFORMATION 

itan – Investigating 

1. Special thanks to Professor John Zarnecki 
Space Sciences Research Institute at the Open University, Milton Keynes, UK, and 

2. ne grit (for use 
in a bird cage), and fine gravel (for use in an aquarium). It is recommended that you 

3.  
compacted. If the sand is compacted, mix it up to reduce compacting. 

 4. 

Mission to T
Surface Composition 

and Mr. Mark Leese of the Planetary and 

Dr Ralph Lorenz of the Space Department, Planetary Exploration Group, John 
Hopkins University, USA, for their help in developing this activity. 

In preparing the soil samples, use modeling clay, playground sand, fi

sieve the gravel so that it has a particle size between about 2.36mm and 5mm. 

When collecting data using the playground sand, make sure that the sand is not

The following figure shows Huygens data with annotations.  

 
Impact signature –Courtesy Rutherford Appleton Laboratory Space Electronics Group 

and the Planetary and Space Sciences Research Institute at the Open University 
 
5. P n 

seeing the impact signature, said: “A crust and a pebble will give you an initial peak, 

e at 
 

rofessor John Zarnecki, Principal Investigator for the Surface Science Package, o

but the match looks better with a pebble and, if we’re seeing lots of them in the 
ground image it’s hardly fanciful that we’ve bashed one of them”. His comments are 
based on the tests scientists at the Planetary and Space Science Research Institut
the Open University did subsequent to the landing, trying to reproduce the Force-time
graph with various combinations of materials.  
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 6. Here are a number of web sites with information on the Cassini-Huygens mission. 
• British National Space Centre (BNSC) – Cassini-Huygens 

http://www.bnsc.gov.uk/default.aspx?nid=4395
• Cassini-Huygens card models to make 

http://www.nasa.gov/pdf/59402main_model_simple.pdf
http://www.nasa,gov/pdf/59403main_model_challenging.pdf

• ESA Cassini-Huygens 
http://www.esa.int/SPECIALS/Cassini-Huygens/

• Mission: Cassini-Huygens 
http://www.uk2planets.org.uk/m_cassini.htm

• NASA Cassini-Huygens Mission to Saturn and Titan 
http://saturn.jpl.nasa.gov/home/index.cfm

• Open University , Planetary and Space Sciences Research Institute  
http://pssri.open.ac.uk/missions/mis-casa1.htm

• PPARC Cassini-Huygens School Resources 
http://www.pparc.ac.uk/Ed/ch/Home.htm

• Ralph Lorenz’s web site – This site includes a document that describes an impact 
penetrometer for a landing spacecraft. 
http://www.lpl.arizona.edu/~rlorenz/ 
http://www.lpl.arizona.edu/~rlorenz/acce.pdf 

• UK Cassini-Huygens Press Conference 
http://pssri.open.ac.uk/missions/UK%20C-H%20Press%20Conf/UK%20C-
H%20Press%20Conf%203%20June%2004.pdf 

 
 7. Here are some useful book and periodicals for additional background information and 

subsequent updates in information. 
• Lifting Titan’s Veil. Ralph Lorenz and Jacqueline Mitton. Cambridge University 

Press 2002. 
• Mission to Saturn: Cassini and the Huygens Probe. David M Harland. Springer-

Verlag 2002. 
• Frontiers. Free magazine on UK particle physics, astronomy and space science. 

Available from Strategic Planning and Communications, Particle Physics and 
Astronomy Research Council (PPARC), Polaris House, North Star Avenue, 
Swindon SN2 1SZ. 

• ESA Bulletin. Free magazine from the European Space Agency (ESA). Available 
from ESA Publications Division, c/o ESTEC, PO Box 299, 2200 AG Noordwijk, 
The Netherlands. 

• Astronomy Now, UK Periodical available at newsstands. 
(http://www.astronomynow.com/)  
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SAMPLE RESULTS 

   
Loose Sand         Fine Grit 

 

   
   Fine Gravel                Clay 

  
ANSWERS TO QUESTIONS 
1.  The students should notice that the impact signatures show high forces over short 

times for harder surfaces and lower forces over longer times for more spongy 
surfaces. 

2. Answers will vary. 

3. In this activity, the students are not using the same equipment as used by the research 
team.  

4. Using a force sensor identical to that on Huygens to sample different soils (including 
combinations of soils) to try and reproduce the impact signature. Unfortunately such a 
sensor is most likely not available. 
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Physics at Amusement Parks 
There are few who would turn down an opportunity to learn some physics through 
amusement park rides. They are usually great fun and are absolutely full of physics to 
discuss in advance and afterwards. The rides may be at local fairgrounds or at large 
theme parks (such as Six Flags or Great America). Some of these rides can usually 
provide the basics of ‘freefall’ drops, spins and rotations in the horizontal plane, 
‘pendulum’ swings, and ‘up and overs’ with and without extra rotations. Some of these 
are shown below.  

    
The images (from left to right) are the Drop Zone (freefall accelerations), and HMB 

Endeavor (pendulum), and Celebration (swings) 
 
The most useful sensors for such activities are the accelerometers and the altimeter. As it 
difficult to predict precisely which accelerometer(s) will be most useful, you will 
measure accelerations using all three accelerometers. Once you are back in the classroom, 
you can select which of these data make the most sense to study for each ride. The 
altimeter is useful when analyzing the graphs of acceleration vs. time. After your visit, 
the altimeter data can help you identify the feature of the ride you are trying to study. 

 
OBJECTIVES 
In this activity, you will 

• measure accelerations in a real world setting. 
• compare the different accelerations produced by various amusement park rides. 

 
MATERIALS 

Bluetooth® equipped computer Vernier Data Vest or elastic cord for  
Logger Pro Software holding the WDSS 
Vernier Wireless Dynamics Sensor System stopwatch 

 
PROCEDURE 
Part I – Before you go to the amusement park 

1. Turn on the WDSS. Note the name on the label of the device. 
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2. Make sure Bluetooth is activated on your computer. Some computers have Bluetooth 
built into them. If that is the case, make sure Bluetooth is turned on. 

3. Start Logger Pro. 

 4. Establish a wireless connection with the WDSS. 
a. Choose Connect Interface from the Experiment menu. Choose Wireless and then 

Scan for Wireless Device.  
b. There will be a short delay while Logger Pro attempts to establish a connection. If 

the WDSS is not found, try scanning again.  
c. A dialog box will appear showing your WDSS on the list of available devices. 

Select your WDSS device and then click  . Once a connection is made, the 
two LEDs on the WDSS will be lit green. 

 
5. Open the file “Amusement Park” from the Probes & Sensors/WDSS folder. 

6. Set up the WDSS for remote data collection. 

a. Choose Remote Setup from the Experiment menu, and then choose your WDSS.  
b. Select the option Disable Stop Button During Remote Data Collection.  
c. Click  to exit this dialog box and use the WDSS for remote data collection. 

The WDSS disconnects from the computer and readings from the WDSS no longer 
appears on the Logger Pro toolbar. The Bluetooth connection LED on the WDSS 
will turn steady red, indicating that the WDSS is no longer communicating with 
the computer. 

 
7. Turn off the WDSS, connect it to the power adapter, and allow it to fully charge. 

Part II – At the Amusement Park 

8. Before each ride, look for specific features on the ride that you are interested in. Use a 
stopwatch to determine approximately when in the ride these features occur. Record 
this information along with other ride details in your lab notebook. 

9. Turn on the WDSS and check to be sure the data collection LED is steady green. 
Orient the WDSS so the x-axis accelerometer arrow is pointing straight up and the 
On/Off switch directed away from you. You are now ready to get on the ride. 

 10. Once properly seated on the ride, start data collection by pressing the Start/Stop 
button ( ) on the WDSS. The button is slightly recessed to prevent accidental 
pressing. You need to press the button carefully to make sure you start the data 
collection run. The Data Collection LED will change from steady green to flashing 
green during data collection. 

 11. Once data collection is complete, the Data Collection LED will flash red and then 
turn steady green, indicating data are stored. As long as the data collection light turns 
steady green, you have enough memory to complete another full data collection run. 
If the light becomes steady red, you will not be able to complete another full data run.  

 12. Repeat Steps 8 – 11 for other rides as directed by your teacher. 

 13. Turn off the WDSS when you are finished collecting data. 
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Part III – Back from the Amusement Park 

 14. Turn on the WDSS. Make sure Bluetooth is activated on your computer. 

 15. Start Logger Pro and open the file “Amusement Park” from the Probes & Sensors – 
WDSS folder.  

 16. From the Experiment menu, choose Remote►Retrieve Remote Data and then the 
name of your WDSS. If your WDSS is not listed, choose the Scan for Wireless 
Device option. Click  to retrieve the data. Choose the option to retrieve your data 
into the current file and click . 

 17. When the Remote Data Retrieval dialog is displayed, it lists all data runs on the 
WDSS. Select the data you want to retrieve from the WDSS and click . You 
can retrieve data without deleting it, so that the data could be retrieved to several 
different computers. 

QUESTIONS 
1. Prepare a presentation describing the physics of the rides you went on. Be sure to 

include graphs that help explain the accelerations a rider experiences on each ride. 
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TEACHER INFORMATION 

Physics at Amusement Parks  
1. Amusement parks and fairgrounds provide excellent opportunities to let students 

experience accelerations and energy transfers through drops, swings, and rotations. 
For better understanding of the physics behind the rides, it is best to limit the number 
of rides each group should study. 

2. As with any activity it is essential to make risk assessments bearing in mind the type 
of activities to be engaged in and who the students are. Ensure there are enough staff 
to supervise and that they have ‘presence.’ Some students should not, on health 
grounds, go on some rides, so make sure that this is checked out in advance. 

3. The maximum number of runs you can collect on a WDSS is 20. 

4. Unless the height of drop is large, the extent of the free-fall will be very limited and 
so a value of around 0 m/s2 is likely to be noted for only a short time. Pendulum type 
swings are useful to investigate, particularly if the full extent of the swings takes one 
from horizontal to near vertical and back. Up and over rotations provide interesting 
data, as do rotations in the horizontal plane. Some rides incorporate twists into 
rotations and these tend to make interpretation of the data more awkward.  

5. The altimeter readings will be relative to the initial altitude measurement.  

6. When discussing the accelerometer reading, it is proper to refer to it as a measure of 
Normal Force per Unit Mass, with units of N/kg, where “normal” is in the direction 
of that particular accelerometer. This is what the accelerometer is actually measuring. 
(Note that it is not the net force per unit mass which would be acceleration.) A 
motionless accelerometer oriented in the vertical direction will give a reading of  
+9.8 N/kg when pointed up and –9.8 N/kg when pointed down. A motionless 
accelerometer oriented in the horizontal direction will read 0 N/kg. An accelerometer 
in freefall will give a value of 0 N/kg regardless of its orientation. Since most people 
prefer the measurement be in m/s2, we have used these units in this manual.  

 7. Here are a number of web sites with information on amusement park physics. 
• Data collection at the Amusement Park – some additional resources from Vernier 

 http://www.vernier.com/cmat/datapark.html  
• Amusement Park Physics – this site has material related to carousel, roller coaster, 

freefall, pendulum, and bumper car rides.  
http://www.learner.org/exhibits/parkphysics/

• Education Related Amusement Park Physics Links 
http://www.newton.dep.anl.gov/app/nau_links.htm

• The Physics of Amusement Parks 
http://library.thinkquest.org/2745/data/openpark.htm

• Theme Park Sites in UK Net Guide 
http://www.uknetguide.co.uk/Entertainment/Theme_Parks/
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SAMPLE RESULTS 

         
Celebration Swings at Great America in Santa Clara, California 

Sensors of interest; 3 axis (x, y, and z) accelerometer 
 
 

         

The Drop Zone freefall drop at Great America in Santa Clara, California 
Sensors of interest; x-axis accelerometer and altimeter 
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The HMB Endeavor pendulum swing at Great America in Santa Clara, California 

Sensors of interest; x-axis and z-axis accelerometer and altimeter 
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Newton’s Second Law 
How does a cart change its motion when you push and pull on it? You might think that 
the harder you push on a cart, the faster it goes. Is the cart’s velocity related to the force 
you apply? Or does the force just change the velocity? Also, what does the mass of the 
cart have to do with how the motion changes? We know that it takes a much harder push 
to get a heavy cart moving than a lighter one.  

The WDSS’s force sensor and x-axis accelerometer will let you measure the force on a 
cart simultaneously with the cart’s acceleration. The total mass of the cart is easy to vary 
by adding masses. Using these tools, you can determine how the net force on the cart, its 
mass, and its acceleration are related. This relationship is Newton’s second law of 
motion. 

 

 
Figure 1 – WDSS on a Vernier dynamics cart and track

 
 
OBJECTIVES 
In this activity, you will 

• collect force and acceleration data for a cart as it is moved back and forth. 
• compare force-time and acceleration-time graphs.  
• analyze a graph of force vs. acceleration. 
• determine the relationship between force, mass, and acceleration. 

 
 
MATERIALS 

Bluetooth® equipped computer Logger Pro Software 
Vernier Wireless Dynamics Sensor System Vernier Dynamics System 

 
 
PRELIMINARY QUESTIONS 
1. When you push on an object, how does the magnitude of the force affect its motion? 

If you push harder, is the change in motion smaller or larger? Do you think this is a 
direct or inverse relationship? 

2. Assume that you have a bowling ball and a baseball, each suspended from a different 
rope. If you hit each of these balls with a full swing of a baseball bat, which ball will 
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change its motion by the greater amount? 

3. In the absence of friction and other forces, if you exert a force, F, on a mass, m, the 
mass will accelerate. If you exert the same force on a mass of 2m, would you expect 
the resulting acceleration to be twice as large or half as large? Is this a direct or 
inverse relationship? 

 
PROCEDURE 
1. Turn on the WDSS. Note the name on the label of the device. 

2. Make sure Bluetooth is activated on your computer. Some computers have Bluetooth 
built into them. If that is the case, make sure Bluetooth is turned on. 

3. Start Logger Pro. 

 4. Establish a wireless connection with the WDSS. 
a. Choose Connect Interface from the Experiment menu. Choose Wireless and then 

Scan for Wireless Device.  
b. There will be a short delay while Logger Pro attempts to establish a connection. If 

the WDSS is not found, try scanning again.  
c. A dialog box will appear showing your WDSS on the list of available devices. 

Select your WDSS device and then click . Once a connection is made, the 
two LEDs on the WDSS will be lit green. 

 
5. Open the file “09 Newtons Second Law” from the Physics with Computers folder. 

6. Attach the force sensor hook to the force sensor end of the WDSS. Attach the WDSS 
to one of the Vernier Dynamics System carts.  

7. Find the mass of the cart with the WDSS attached. Record the mass in the data table.  

8. Place the cart on a level surface. Make sure the cart is not moving and click . 
Check to make sure both the force sensor and x-axis accelerometer are highlighted 
and click . 

Trial I  

9. You are now ready to collect force and acceleration data. Grasp the force sensor 
hook. Click  and take several seconds to move the cart back and forth on the 
table. Vary the motion so that both small and large forces are applied. Make sure that 
your hand is only touching the hook on the Force Sensor and not the Force Sensor or 
cart body. 

 10. Note the shape of the force-time and acceleration-time graphs. Click the Examine 
button, , and move the mouse across the force vs. time graph. When the force is 
maximum, is the acceleration maximum or minimum? To turn off Examine mode, 
click the Examine button a second time. 

 11. The graph of force vs. acceleration should appear to be a straight line. To fit a straight 
line to the data, click on the graph, then click the Linear Fit button, . Record the 
equation for the regression line in the data table. 
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 12. Print copies of each graph. 

Trial 2 

 13. Attach the 0.500 kg mass to the cart. Record the mass of the cart, sensors, and 
additional mass in the data table. Repeat Steps 9 – 12. 

 
DATA TABLE 
Trial I  

Mass of cart with WDSS (kg)  

Regression line for force vs. acceleration data 

 
 

Trial 2 

Mass of cart with WDSS and additional mass (kg)  

Regression line for force vs. acceleration data 

 
 

 
 
ANALYSIS 
1. Compare the force-time and acceleration-time graphs for a particular trial. How are 

they different? How are they the same? 

2. Are the net force on an object and the acceleration of the object directly proportional? 
Explain, using experimental data to support your answer. 

3. What are the units of the slope of the force vs. acceleration graph? Simplify the units 
of the slope to fundamental units (m, kg, s).  

4. For each trial compare the slope of the regression line to the mass being accelerated. 
What does the slope represent? 

5. Write a general equation that relates all three variables: force, mass, and acceleration. 

 
EXTENSIONS 
Use this apparatus as a way to measure mass. Place an unknown mass on the cart. 
Measure the acceleration for a known force and determine the mass of the unknown. 
Compare your answer with the actual mass, as measured using a balance. 
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TEACHER INFORMATION  

Newton’s Second Law 
1. Traditional experiments for Newton’s second law often use motion detectors or spark 

timers to measure distance data and calculate acceleration. This experiment uses the 
accelerometer in the WDSS to actually measure the acceleration. This device, along 
with the Force Sensor of the WDSS, makes it easy to quickly collect accurate force 
and acceleration data.  

2. In this experiment, the students will analyze the force vs. acceleration graph. During 
this analysis they will perform a linear fit on the data. The slope of this fit should be 
close to the mass of the cart and added objects. To get the best possible results, you 
may want to calibrate both the WDSS’s force sensor and accelerometer. 

3. Since the accelerometer of the WDSS is sensitive to inclination, the students are 
instructed to make sure the surface is level and zero the sensors prior to data 
collection.  

4. This lab was written using 0.500 kg dynamics carts. If you are using large carts, you 
may need to change the maximum and minimum values for force and acceleration on 
the graphs.  

5. The mass used in this experiment is the inertial mass, as opposed to the gravitational 
mass.  You may wish to make this distinction with your students. 

6.  If the accelerometer data seem noisy, make sure that the sensor is securely fastened to 
the cart. If it isn't fastened firmly, it could rattle and introduce more noise to the data 
set. 

7.  Explore all magnitudes of force by moving the cart back and forth in a random way. 
Do NOT just pull the cart at a uniform speed or at uniform acceleration, since you'll 
concentrate points in a small region of the force vs. acceleration plot that way. 

8. When discussing the accelerometer reading, it is proper to refer to it as a measure of 
Normal Force per Unit Mass, with units of N/kg, where “normal” is in the direction 
of that particular accelerometer. This is what the accelerometer is actually measuring. 
(Note that it is not the net force per unit mass which would be acceleration.) A 
motionless accelerometer oriented in the vertical direction will give a reading of  
+9.8 N/kg when pointed up and –9.8 N/kg when pointed down. A motionless 
accelerometer oriented in the horizontal direction will read 0 N/kg. An accelerometer 
in freefall will give a value of 0 N/kg regardless of its orientation. Since most people 
prefer the measurement be in m/s2, we have used these units in this manual.  

 
ANSWERS TO PRELIMINARY QUESTIONS  
1. The larger the force, the more the motion changes. This is a direct relationship. 

2. The baseball will change its motion more than the bowling ball. 

3. The new acceleration would be half as large. This is an inverse relationship between 
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mass and acceleration. 

 
SAMPLE RESULTS 
Trial I  

Mass of cart with WDSS (kg) 0.70 kg 

Regression line for force vs. acceleration data 

002.073.0 −= xy  

Trial 2 

Mass of cart with WDSS and additional mass (kg) 1.20 kg 

Regression line for force vs. acceleration data 

05.021.1 −= xy  

 
 

    
Force and acceleration graphs for cart equipped 

with force and acceleration sensors  
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ANSWERS TO ANALYSIS QUESTIONS 
1. The graphs look very similar, showing that force and acceleration are closely related. 

The peaks on one graph occur at the same time on each graph. 

2. Force and acceleration are directly proportional. This relationship can be seen when 
the force-time and acceleration-time graphs are compared. Also, the graph of force vs. 
acceleration shows a linear relationship. 

3. N/(m/s2) = kg 

4. In Trial 1, the mass was 0.7 kg while the slope of the linear regression line was 0.73 
N/(m/s2). In Trial 2, the mass was 1.20 kg while the slope of the linear regression line 
was 1.21 N/(m/s2). In both cases the mass was within the uncertainty of the fitted 
slope. The slope corresponds to the combined mass of the cart, sensors, and any 
added mass. 

5. F = m a 
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Newton’s Third Law 
You may have learned this statement of Newton’s third law: “To every action there is an 
equal and opposite reaction.” What does this sentence mean? 

Unlike Newton’s first two laws of motion, which concern only individual objects, the 
third law describes an interaction between two bodies. For example, what if you pull on 
your partner’s hand with your hand? To study this interaction, you can use two Force 
Sensors. As one object (your hand) pushes or pulls on another object (your partner’s 
hand) the Force Sensors will record those pushes and pulls. They will be related in a very 
simple way as predicted by Newton’s third law. 

The action referred to in the phrase above is the force applied by your hand, and the 
reaction is the force that is applied by your partner’s hand. Together, they are known as a 
force pair. This short experiment will show how the forces are related. 

 
Figure 1 – Collecting force pairs with two WDSS units

 
OBJECTIVES 
In this activity, you will 

• observe the directional relationship between force pairs.  
• observe the time variation of force pairs. 
• explain Newton’s third law in simple language.  

 
 
MATERIALS 

Bluetooth® equipped computer 500 g mass 
Logger Pro Software string 
two Vernier Wireless Dynamics Sensor  rubber band 

Systems  
 
 
PRELIMINARY QUESTIONS 
1. You are driving down the highway and a bug splatters on your windshield. Which is 

greater: the force of the bug on the windshield, or the force of the windshield on the 
bug?  

2. Hold a rubber band between your right and left hands. Pull with your left hand. Does 
your right hand experience a force? Does your right hand apply a force to the rubber 
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band? What direction is that force compared to the force applied by the left hand? 

3. Pull harder with your left hand. Does this change any force applied by the right hand? 

4. How is the force of your left hand, transmitted by the rubber band, related to the force 
applied by your right hand? Write a rule, in words, for the force relationship. 

 
PROCEDURE 
1. Turn on the two WDSS units. Note the name on the label of the devices. 

2. Make sure Bluetooth is activated on your computer. Some computers have Bluetooth 
built into them. If that is the case, make sure Bluetooth is turned on. 

3. Start Logger Pro. 

 4. Establish a wireless connection with the WDSS. 
a. Choose Connect Interface from the Experiment menu. Choose Wireless and then 

Scan for Wireless Device.  
b. There will be a short delay while Logger Pro attempts to establish a connection. If 

the WDSS is not found, try scanning again.  
c. A dialog box will appear showing your WDSS on the list of available devices. 

Select your WDSS device and then click . Once a connection is made, the 
two LEDs on the WDSS will be lit green. 

 
5. Open the file “11 Newton’s Third Law” in the Physics with Computers folder.  

6. Attach the Force Senor Hooks to the force sensor ends of the two WDSS units.  

7. Force sensors measure force only along one direction; if you apply a force along 
another direction, your measurements will not be meaningful. The WDSS force 
sensor responds to force directed parallel to the long axis of the sensor.  

 8. OPTIONAL – Since you will be comparing the readings of two different Force 
Sensors, it is important that they both read force accurately. In other words, you need 
to calibrate them. To calibrate the first sensor,  
a. Choose Calibrate from the Experiment menu. Select one of the WDSS force 

sensors. Click on the  button.  
b. Remove all force from the first sensor and hold it vertically with the hook pointed 

down. Enter a 0 (zero) in the Value 1 field, and after the reading shown for 
Reading 1 is stable, click . This defines the zero force condition.  

c. Hang the 500 g mass from the sensor. This applies a force of 4.9 N. Enter 4.9 in 
the Value 2 field, and after the reading shown for Reading 2 is stable, then click 

.  
d. Click  to complete the calibration of the first force sensor. 
e. Repeat the Steps a-d for the second WDSS force sensor. 

 
 9. You will be using the sensors in a different orientation than that in which they were 

calibrated. Zero the force sensors to account for this. Hold the sensors horizontally 
with no force applied, and click . Make sure both sensors are highlighted in the 
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Zero Sensor Calibrations box and click  to zero both sensors. This step makes 
both sensors read exactly zero when no force is applied. 

10.  Click  to take a trial run of data. Pull on each sensor and note the sign of the 
reading. Use this to establish the positive direction for each sensor. For this activity it 
is helpful to set up the two sensors differently, since later you will have the sensors 
positioned so that a force to the left will generate the same sign of force on each 
sensor. 

 11. Choose Set Up Sensors from the Experiments menu and then select your second 
WDSS device. Click  below the force sensor and select Reverse Direction. 
This will make the force sensor report negative values for forces that pull the hook 
away from the sensor. 

 12. Make a short loop of string with a circumference of about 30 cm. Use it to attach the 
hooks of the force sensors. Hold one sensor in your hand and have your partner hold 
the other so you can pull on each other using the string as an intermediary.  

 13. Click  to begin collecting data. Gently tug on your partner’s sensor with your 
sensor, making sure the graph does not go off scale. Also, have your partner tug on 
your sensor. You will have 10 seconds to try different pulls. Choose Store Latest Run 
from the Experiment menu. 

 14. What would happen if you used the rubber band instead of the string? Would some of 
the force get “used up” in stretching the band? Use the prediction tool to sketch a 
prediction graph, and repeat Steps 12 – 13 using the rubber band instead of the string.  

 
ANALYSIS 
1. Examine the two data runs. What can you conclude about the two forces (your pull on 

your partner and your partner’s pull on you)? How are the magnitudes related? How 
are the signs related?  

2. How does the rubber band change the results—or does it change them at all?  

3. While you and your partner are pulling on each other’s sensors, do your sensors have 
the same positive direction? What impact does your answer have on the analysis of 
the force pair? 

4. Is there any way to pull on your partner’s sensor without your partner’s sensor pulling 
back? Try it. 

5. Reread the statement of the third law given at the beginning of this activity. The 
phrase equal and opposite must be interpreted carefully, since for two vectors to be 
equal (

r
) and opposite (

r
A B=

r r
A B= − ) then we must have 

r r
A B= = 0 ; that is, both 

forces are always zero. What is really meant by equal and opposite? Restate 
Newton’s third law in your own words, not using the words “action,” “reaction,” or 
“equal and opposite.” 

6. Re-evaluate your answer to the bug-windshield question.  
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EXTENSIONS 
1. Fasten one WDSS to your lab bench and repeat the experiments. Does the bench pull 

back as you pull on it? Does it matter that the second WDSS is not held by a person?  

2. Use a rigid rod to connect the force sensor hooks instead of a string and experiment 
with mutual pushes instead of pulls. Repeat the experiments. Does the rod change the 
way the force pairs are related? 
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TEACHER INFORMATION  

Newton’s Third Law 
1. This experiment may not take a full lab period; it is intended as a short in-class 

activity to clarify an often-misunderstood law. You may want to combine it with a 
Newton’s second law experiment.  

2. Be careful that students do not pull too hard on the Force Sensors. 

3. This activity may be the first in which students calibrate a sensor, so you may need to 
devote time to understanding that process. 

4. A push is positive for one sensor and negative for the other. Having the signs inverted 
is helpful in this activity, since the sensors are held facing one another. With opposite 
signs, a force to the right is read as the same sign on each sensor, so the two sensors 
share a single sign convention. 

 
ANSWERS TO PRELIMINARY QUESTIONS 
1. The bug exerts the same magnitude force on the windshield as the windshield exerts 

on the bug. The directions are opposite. 

2. The right hand exerts a force on the left via the rubber band and visa versa; the two 
forces are in opposite directions. 

3. Yes, increasing the force exerted by one hand increases the force exerted by the other. 

4. The force exerted by the left hand is the same magnitude but the opposite direction as 
the force exerted by the right. 

 
SAMPLE RESULTS 

 
 
ANSWERS TO ANALYSIS QUESTIONS 
1. The magnitudes are the same but the directions are opposite. This is true regardless of 
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the time of comparison. 

2. The rubber band does not change the results. 

3. When the sensors are facing one another, a pull is read as the same sign as a push on 
the other, meaning that the positive direction of the two sensors is the same, while 
they are in that orientation. 

4. No, you can’t pull without your partner pulling back. 

5. Answers will vary, but should be of this content: When body A exerts a force on body 
B, body B exerts a force on body A of the same magnitude but the opposite direction.  

6. Answers will vary. 
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Investigating Collisions with Crumple 
Zones 

The design of modern railway cars such as that shown in Figure 1 incorporates a series of 
crush or crumple zones so that, in the event of a collision, much of the train’s kinetic 
energy is transferred through deformation. Such zones reduce the accelerations and forces 
on both the train and its passengers and also make it less likely a derailment will occur. 
Current safety regulations for new train cars state that the crumple zones in each carriage 
must absorb at least 3MJ of energy. A modern car equipped with a crumple zone, and 
hitting a wall at 55 km/hr, only absorbs about 0.1 MJ through deformation of this zone.  

  
Figure 1 – Virgin Rail Class 390 Pendolino       Figure 2 – Energy absorbing 

 train going through Rugby           crumpling 
 
Crumple zones in train cars is just one example of innovations designed to keep 
passengers safe in the event of a collision. Other examples include seat belts and air bags 
particularly for use in automobiles. In this activity, you will investigate accelerations 
during collisions with and without crumple zones. 

 
OBJECTIVES 
In this activity, you will 

• simulate collisions with and without crumple zones.  
• simulate collisions with differing quantities of crumple zones. 
• investigate the effectiveness of a crumple zone. 
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MATERIALS  
Bluetooth® equipped computer 10 heavy-duty aluminum foil strips 
Logger Pro Software 3 × 10 cm 
Vernier Wireless Dynamics Sensor System 10 standard aluminum foil strips 
glue stick 3 × 10 cm 
dynamics cart and track with 500 g mass meter stick or measuring tape 

 
 
PROCEDURE 
Establish a connection to your WDSS 

1. Turn on the WDSS. Note the name on the label of the device. 

2. Make sure Bluetooth is activated on your computer. Some computers have Bluetooth 
built into them. If that is the case, make sure Bluetooth is turned on. 

3. Start Logger Pro. 

 4. Establish a wireless connection with the WDSS. 
a. Choose Connect Interface from the Experiment menu. Choose Wireless and then 

Scan for Wireless Device.  
b. There will be a short delay while Logger Pro attempts to establish a connection. If 

the WDSS is not found, try scanning again.  
c. A dialog box will appear showing your WDSS on the list of available devices. 

Select your WDSS device and then click . Once a connection is made, the 
two LEDs on the WDSS will be lit green. 

 
Sensor and Data Collection Setup 

5. Choose Set Up Sensors from the Experiments menu 
and then select your WDSS device. Set up the sensors 
so that only the x-axis accelerometer is active. 

6. Choose Data Collection from the Experiment menu. 
Adjust the data collection experiment length to 1 
second with a sampling rate of 250 samples/second.  

Click on the Triggering tab and set up triggering as 
shown in Figure 3. 

7. Set up the dynamics cart and track using one set of 
the adjustable leveling feet to create a slight incline. 
Attach the track end stop to the lower end of the track 
and place that end against a wall or firm surface that 
will prevent the track from moving during the 
experiment. Adjust the end stop so it is positioned at 
the 7 cm mark on the track. 

Figure 3 

40  © 2007 - Vernier Software & Technology 



 Activities for the Wireless Dynamics Sensor System 

8. Mount the WDSS on top of the cart as shown in Figure 4. Arrange the cart and 
WDSS so that the x-axis accelerometer is pointing towards the track’s end stop. With 
the cart in place and not moving, click  to zero the x-axis accelerometer. 

 
Figure 4 – WDSS attached to cart on a track  

 
9. Attach the 500 g mass to the WDSS. For more stability, place the mass toward the 

center of the car. 

10. Roll each strip of aluminum foil into a cylinder. Attach the two edges together using 
glue from the glue stick. Each cylinder should be 3 cm in height. Be sure you know 
which cylinders are heavy-duty and which are standard aluminum foil. 

Simulating Collisions using Heavy-Duty Aluminum Foil 

11. Position the front edge of the cart at the 60 cm mark on the track. The cart will be  
53 cm from the end stop. Click  to begin data collection. Release the cart and 
allow it to collide with the end stop. The collision will have triggered data collection. 

12. Once data collection is complete, review the data to find the magnitude of the largest 
acceleration associated with stopping the WDSS. Record this value in the data table 
provided. Determine the time it took for the cart to stop its forward progress and 
record this value in the data table provided. 

13.  Position one foil cylinder so that it is centered on the track with the base of the 
cylinder against the track’s end stop. Repeat Steps 11 – 12 using the foil cylinder as a 
crumple zone. Note the condition of the cylinder after the collision. 

14. Repeat Step 13 using two foil cylinders placed side by side. 

15. Repeat Step 13 using three foil cylinders placed side by side. 

16. Repeat Step 13 using four foil cylinders placed side by side. 

Simulating Collisions using Standard Aluminum Foil 

17. Repeat Steps 13 – 16, this time using standard aluminum foil cylinders in place of the 
heavy-duty foil. 
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DATA TABLE 

 

Maximum Stopping 
Acceleration  

(m/s2) 

Time to stop 

(s) 

Without Crumple Zones   

 

Heavy-Duty Aluminum Foil Standard Aluminum Foil 

With Crumple Zones 

Maximum 
Stopping 

Acceleration  
(m/s2) 

 
 

Time to stop 
(s)  

Maximum 
Stopping 

Acceleration  
(m/s2) 

 
 

Time to stop 
(s)  

1 Foil Cylinder     

2 Foil Cylinders     

3 Foil Cylinders     

4 Foil Cylinders     

 
 
QUESTIONS 
1. What is the relationship between the maximum stopping acceleration and the 

maximum stopping Force experienced by the cart?  What physics principle is the 
relationship based on? 

2. What is the relationship between the maximum stopping acceleration and the time it 
takes the cart to stop?  What physics principle is the relationship based on? 

3. What is the relationship between the number of cylinders and the maximum stopping 
acceleration for the heavy-duty foil? Does this same relationship hold for the standard 
foil? Explain. 

4. Based on your data, which crumple zone was the most effective? Which was the least 
effective? Explain your reasoning. 

 
EXTENSION 
1. Design a crumple zone that would best protect passengers during a collision. Describe 

your design.  Explain how you determined the right “stiffness” of the crumple zone? 

2. Research how scientists design and test crumple zones. Be sure to investigate how 
Finite Element Analysis (FEA) is used.  
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TEACHER INFORMATION 

Investigating Collisions with Crumple 
Zones 

1. Most students will know that cars have crumple zones, air bags and seat belts to aid 
the protection of people in collisions. They might not realize that crumple zones have 
also been developed for use on trains. The crumple zones also help to keep a train on 
the track following a collision. 

2. When discussing the accelerometer reading, it is proper to refer to it as a measure of 
Normal Force per Unit Mass, with units of N/kg, where “normal” is in the direction 
of that particular accelerometer. This is what the accelerometer is actually measuring. 
(Note that it is not the net force per unit mass which would be acceleration.) A 
motionless accelerometer oriented in the vertical direction will give a reading of  
+9.8 N/kg when pointed up and -9.8 N/kg when pointed down. A motionless 
accelerometer oriented in the horizontal direction will read 0 N/kg. An accelerometer 
in freefall will give a value of 0 N/kg regardless of its orientation. Since most people 
prefer the measurement be in m/s2, we have used these units in this manual.  

3. To prevent damaging your WDSS, be sure to keep it on the dynamics track. 

4. WDSS acceleration readings greater than ±50 m/s2 are not reliable as they exceed the 
maximum measurable acceleration of the WDSS.  These accelerations result when the 
cart hits the end stop. 

 5. The following web sites contain information on collisions with crumple zones. 
• Finite Element Analysis – this Wikipedia web site provides a very brief explanation 

of what FEA is and where and how it is used, plus a number of useful external 
links. 
http://en.wikipedia.org/wiki/Finite_element_analysis

• Introduction to Finite Element Analysis – this site provides a simple and brief 
introduction to FEA, its history, what it is, how it works and where it is often used. 
http://www.sv.vt.edu/classes/MSE2094_NoteBook/97ClassProj/num/widas/history.
html

• Modeling collisions of rail vehicles with deformable objects – this detailed report 
was produced by AEA Technology Rail for the Rail Safety and Standards Board of 
the UK. The report contains many images showing the stages of such simulated 
collisions together with associated graphs looking at the velocity and energy 
profiles of the colliding objects. 
http://www.rssb.co.uk/pdf/reports/research/T305%20Modelling%20collisions%20o
f%20rail%20vehicles%20with%20deformable%20objects.pdf  

• Volpe Center Highlights – this article looks includes information about a crash test 
of railway cars colliding with a concrete wall at 26 mph. The web site is for the 
research and development centre in Cambridge, Massachusetts, USA for national 
transportation systems. 
http://www.volpe.dot.gov/ufosrc/highlts/pdf/400.pdf
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• Will the crash zone crumple? FEA tells – this article is from Machine Design which 
looks at the crumple zone development on the Class 390 Pendolino trains now in 
use with Virgin Rail in the UK. 
http://www.machinedesign.com/ASP/viewSelectedArticle.asp?strArticleId=56432
&strSite=MDSite&catId=0  

 
 
SAMPLE RESULTS 

  
 no crumple zone 

  
 Heavy-Duty Foil – 1 cylinder Heavy-Duty Foil – 2 cylinders 

  
 Heavy-Duty Foil – 3 cylinders Heavy-Duty Foil – 4 Cylinders 
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 Standard Foil – 1 cylinder Standard Foil – 2 cylinders 

  
 Standard Foil – 3 cylinders Standard Foil – 4 Cylinders 
 
 

 

Maximum Stopping 
Acceleration  

(m/s2) 

Time to stop 

(s) 

Without Crumple Zones >50 0.008 

 

Heavy-Duty Aluminum Foil Standard Aluminum Foil 

With Crumple Zones 

Maximum 
Stopping 

Acceleration  
(m/s2) 

 
 

Time to stop 
(s)  

Maximum 
Stopping 

Acceleration  
(m/s2) 

 
 

Time to stop 
(s)  

1 Foil Cylinder 9.36 0.115 > 50 0.730 

2 Foil Cylinders 9.43 0.066 6.24 0.122 

3 Foil Cylinders 14.40 0.052 7.21 0.094 

4 Foil Cylinders 15.22 0.049 7.76 0.072 
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ANSWERS TO QUESTIONS 
1. The maximum acceleration and force are directly related.  As one goes up so does the 

other.  This is Newton’s 2nd Law. 

2. The maximum acceleration and time to stop the cart are inversely related.  As the 
maximum acceleration increases, the time to stop the cart decreases.  This is based on 
the impulse-momentum theorem.  Given the carts all have the same change in 
momentum, they all require the same impulse to stop the cart.  The cart with the 
largest average acceleration will stop in the shortest amount of time. 

3. Answers will vary. For our data, as the number of cylinders increased, the maximum 
acceleration increased.  This is a result of the increased “stiffness” of the crumple 
zones. This was not the case for the standard foil where a single cylinder was not able 
to significantly slow the cart before it impacted the end stop.  For two or more 
cylinders, the results were similar to the heavy-duty foil. 

4. Answers will vary. From our data, the best crumple zone was the two cylinder, 
standard foil crumple zone.  This had the smallest maximum stopping acceleration 
and the longest stopping time.  The worse crumple zone was the single cylinder 
standard foil.  The cylinder was completely flattened, allowing the cart to impact the 
end stop with a force comparable to the collision without a crumple zone. 
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