• A Second Look at the Kinetics of the Iron−Oxygen Reaction: Determination of the Total Order Using a Greener Approach

    A. M. R. P. Bopegedera (The Evergreen State College, Washington);
    J. Chem. Educ., 95, 2018, pp 1897−1899.

    The author demonstrates how to use Vernier Oxygen Gas Sensors and Logger Pro 3 software to monitor the change in oxygen level as the iron in commercial hand warmers react with the air above them.

  • Investigating NOx Concentrations on an Urban University Campus Using Passive Air Samplers and UV−Vis Spectroscopy

    Cole M. Crosby, Richard A. Maldonado, Ahyun Hong, Ryan L. Caylor, Kristine L. Kuhn, and Matthew E. Wise (Concordia University, Oregon);
    J. Chem. Educ., 95, 2018, pp 2023−2027.

    The authors demonstrate how to use Vernier SpectroVis Plus Spectrophotometers and LabQuest 2 interfaces to measure gaseous nitrogen oxides concentrations.

  • Investigating the Clough, Lutz, and Jirgensons Rule for the pH Dependence of Optical Rotation of Amino Acids

    Scott Simpson and Alexandra M. Izydorczak (St. Bonaventure University, New York);
    J. Chem. Educ., 95, 2018, pp 1872−1874.

    Students use a Vernier Chemical Polarimeter and Logger Pro 3 software to determine if lowering the pH on L configuration amino acids causes the molar optical rotation to become more positive.

  • Buffers in Context: Baby Wipes As a Buffer System

    Jon-Marc G. Rodriguez, Sarah Hensiek, Jeanne R. Meyer, Cynthia J. Harwood, and Marcy H. Towns (Purdue University, Indiana);
    J. Chem. Educ., 95, 2018, pp 1816−1820.

    Students use baby wipes and deionized water to create and test buffer solutions. Vernier pH Sensors and LabQuest 2 interfaces help students study the buffer solutions.

  • Unnatural Chemical Biology: Research-Based Laboratory Course Utilizing Genetic Code Expansion

    Kelsey M. Kean, Kari van Zee, and Ryan A. Mehl (Oregon State University, Oregon);
    J. Chem. Educ., 96, 2019, pp 66−74.

    Students use a Vernier SpectroVis Plus Spectrophotometer or Gas Pressure Sensor to determine the kinetics of enzyme hydrolysis.

  • Combining the Maker Movement with Accessibility Needs in an Undergraduate Laboratory: A Cost-Effective Text-to-Speech Multipurpose, Universal Chemistry Sensor Hub (MUCSH) for Students with Disabilities

    Ronald Soong, Kyle Agmata, Tina Doyle, Amy Jenne, Tony Adamo, and Andre Simpson (University of Toronto, Ontario);
    J. Chem. Educ., 95, 2018, pp 2268−2272.

    The researchers develop a cost-effective sensor interface that uses Arduino technology. This article describes how to use a Vernier pH BNC electrode and open source software.

  • Demonstration Extensions Based on Color-Changing Goldenrod Paper

    Donald K. Schorr and Dean J. Campbell (Bradley University, Illinois);
    J. Chem. Educ., [Online early access], DOI: 10.1021/acs.jchemed.8b00341, Published Online: Dec 5, 2018, https://pubs.acs.org/doi/10.1021/acs.jchemed.8b00341 (accessed Feb 8, 2019).

    The authors use a Vernier UV-VIS Spectrophotometer to examine ultraviolet and visible absorbance spectra from extracts of goldenrod paper.

  • Modified Siwoloboff−Wiegand Procedure for the Determination of Boiling Points on a Microscale

    Timothy L. Troyer, Kristen R. Mounsey, William J. King, Laura M. Givens, Jessica A. Hutton, Melissa Hood Benges, Kindra N. Whitlatch, and Jacob D. Wagoner (Huntington University, Indiana; West Virginia Wesleyan College, West Virginia);
    J. Chem. Educ., 95, 2018, pp 1406−1410.

    The authors devise a system to determine the boiling points of very small volumes of liquids using a digital hotplate, block of aluminum, Go!Temp temperature probe, and an original LabQuest interface.

  • Applying Chemistry Knowledge to Code, Construct, and Demonstrate an Arduino−Carbon Dioxide Fountain

    Seong-Joo Kang, Hye-Won Yeo, and Jihyun Yoon (Korea National University of Education, Republic of Korea, Dankook University, Republic of Korea);
    J. Chem. Educ., [Online early access], DOI: 10.1021/acs/jchemed.8b00663, Published Online: Jan 30, 2019, https://pubs.acs.org/doi/10.1021/acs.jchemed.8b00663 (accessed Feb 8, 2019).

    The authors automate a classic experiment, the Carbon Dioxide Fountain, by using a Vernier Gas Pressure Sensor connected to an Arduino microcontroller.