Vernier Software and Technology
Vernier Software & Technology

Heat of Fusion of Ice

Figure from experiment 4 from Chemistry with Vernier

Introduction

Melting and freezing behavior are among the characteristic properties that give a pure substance its unique identity. As energy is added, pure solid water (ice) at 0°C changes to liquid water at 0°C.

In this experiment, you will determine the energy (in joules) required to melt one gram of ice. You will then determine the molar heat of fusion for ice (in kJ/mol). Excess ice will be added to warm water, at a known temperature, in a Styrofoam cup. The warm water will be cooled down to a temperature near 0°C by the ice. The energy required to melt the ice is removed from the warm water as it cools.

To calculate the heat that flows from the water, you can use the relationship

q = {C_p} \cdot m \cdot \Delta t

where q stands for heat flow, Cp is specific heat, m is mass in grams, and Δt is the change in temperature. For water, Cp is 4.18 J/g°C.

Objectives

In this experiment, you will

  • Determine the energy (in Joules) required to melt one gram of ice.
  • Determine the molar heat of fusion for ice (in kJ/mol).

Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

Option 1

Option 2

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Standards Correlations

See all standards correlations for Chemistry with Vernier »

Chemistry with Vernier

See other experiments from the lab book.

1Endothermic and Exothermic Reactions
2Freezing and Melting of Water
3Another Look at Freezing Temperature
4Heat of Fusion of Ice
5Find the Relationship: An Exercise in Graphing Analysis
6Boyle's Law: Pressure-Volume Relationship in Gases
7Pressure-Temperature Relationship in Gases
8Fractional Distillation
9Evaporation and Intermolecular Attractions
10Vapor Pressure of Liquids
11Determining the Concentration of a Solution: Beer's Law
12Effect of Temperature on Solubility of a Salt
13Properties of Solutions: Electrolytes and Non-Electrolytes
14Conductivity of Solutions: The Effect of Concentration
15Using Freezing Point Depression to Find Molecular Weight
16Energy Content of Foods
17Energy Content of Fuels
18Additivity of Heats of Reaction: Hess's Law
19Heat of Combustion: Magnesium
20Chemical Equilibrium: Finding a Constant, Kc
21Household Acids and Bases
22Acid Rain
23Titration Curves of Strong and Weak Acids and Bases
24Acid-Base Titration
25Titration of a Diprotic Acid: Identifying an Unknown
26Using Conductivity to Find an Equivalence Point
27Acid Dissociation Constant, Ka
28Establishing a Table of Reduction Potentials: Micro-Voltaic Cells
29Lead Storage Batteries
30Rate Law Determination of the Crystal Violet Reaction
31Time-Release Vitamin C Tablets
32The Buffer in Lemonade
33Determining the Free Chlorine Content of Swimming Pool Water
34Determining the Quantity of Iron in a Vitamin Tablet
35Determining the Phosphoric Acid Content in Soft Drinks
36Microscale Acid-Base Titration

Experiment 4 from Chemistry with Vernier Lab Book

<em>Chemistry with Vernier</em> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Dev Reference: VST0073

Go to top