Vernier Software & Technology

Bungee Jump Accelerations

Introduction

In this experiment, you will investigate the accelerations that occur during a bungee jump. The graph below records the acceleration vs. time for an actual bungee jump, where the jumper jumped straight upward, then fell vertically downward. The positive direction on the graph is upward.

For about the first 2 seconds, the jumper stands on the platform in preparation for the jump. At this point the acceleration is 0 m/s2. In the next short period of time, the jumper dips downward then pushes upward, both accelerations showing up on the graph. Between about 2.5 seconds and 4.5 seconds, the jumper is freely falling and the acceleration is near –9.8 m/s2.

When all of the slack is out of the bungee cord, the acceleration begins to change. As the bungee cord stretches, it exerts an upward force on the jumper. Eventually the acceleration is upward although the jumper is still falling. A maximum positive acceleration corresponds to the bungee cord being extended to its maximum.

In your experiment, a block of wood or a toy doll will substitute for the jumper, and a rubber band will substitute for the bungee cord. An accelerometer connected to the “jumper” will be used to monitor the accelerations.

Objectives

• Use an accelerometer to analyze the motion of a bungee jumper from just prior to the jump through a few oscillations after the jump.
• Determine where in the motion the acceleration is at a maximum and at a minimum.
• Compare the laboratory jump with an actual bungee jump.

Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

You may also need an interface and software for data collection. What do I need for data collection?

Physics with Vernier

See other experiments from the lab book.

 1 Graph Matching 2A Back and Forth Motion 2B Back and Forth Motion 3A Cart on a Ramp 3B Cart on a Ramp 4A Determining g on an Incline 4B Determining g on an Incline 5 Picket Fence Free Fall 6 Ball Toss 7 Bungee Jump Accelerations 8A Projectile Motion (Photogates) 8B Projectile Motion (Projectile Launcher) 9 Newton's Second Law 10 Atwood's Machine 11 Newton's Third Law 12 Static and Kinetic Friction 13 Air Resistance 14 Pendulum Periods 15 Simple Harmonic Motion 16 Energy of a Tossed Ball 17 Energy in Simple Harmonic Motion 18A Momentum, Energy and Collisions 18B Momentum, Energy and Collisions 19A Impulse and Momentum 19B Impulse and Momentum 20 Centripetal Accelerations on a Turntable 21 Accelerations in the Real World 22 Ohm's Law 23 Series and Parallel Circuits 24 Capacitors 25 The Magnetic Field in a Coil 26 The Magnetic Field in a Slinky 27 Electrical Energy 28A Polarization of Light 28B Polarization of Light (Rotary Motion Sensor) 29 Light, Brightness and Distance 30 Newton's Law of Cooling 31 The Magnetic Field of a Permanent Magnet 32 Sound Waves and Beats 33 Speed of Sound 34 Tones, Vowels and Telephones 35 Mathematics of Music

Experiment 7 from Physics with Vernier Lab Book

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.