Vernier Software and Technology
Vernier Software & Technology

Diffusion through Membranes

Figure from experiment 3 from Agricultural Science with Vernier

Introduction

Diffusion is a process that allows ions or molecules to move from where they are more concentrated to where they are less concentrated. This process accounts for the movement of many small molecules across a cell membrane. Diffusion is the process by which cells acquire food and exchange waste products. Oxygen, for instance, might diffuse in pond water for use by fish and other aquatic animals. When animals use oxygen, more oxygen will diffuse to replace it from the neighboring environment. Waste products released by aquatic animals are diluted by diffusion and dispersed throughout the pond.

It is important to consider how the rate of diffusion of particles might be affected or altered.

  • Diffusion may be affected by the steepness of the concentration gradient (the difference between the number of ions or molecules in one region of a substance and that in an adjoining region).
  • Diffusion might be affected by other different, neighboring particles. For instance, if oxygen diffuses towards a single-celled pond organism at a certain rate, will that rate be altered if some other molecule suddenly surrounded the organism?

One way to measure the rate of diffusion of ions is to monitor their concentration in solution over a period of time. Since ions are electrically charged, water solutions containing ions will conduct electricity. A Conductivity Probe is capable of monitoring ions in solution. This probe however, will not measure the amount of electrically neutral molecules dissolved in water. Salts, such as sodium chloride, produce ions when they dissolve in water. If you place a salt solution in a container such as dialysis tubing, the salt can travel through the very small holes in the tubing. When dialysis tubing containing a solution of salt ions is placed into a beaker of water, the ions can diffuse out of the tubing and into the surrounding water. In this way, you will be able to measure the diffusion of salts in a solution of water and determine how concentration gradients and the presence of other particles affect the diffusion of the salt across a membrane.

Objectives

In this experiment, you will

  • Use a Conductivity Probe to measure the ionic concentration of various solutions.
  • Study the effect of concentration gradients on the rate of diffusion.
  • Determine if the diffusion rate for a molecule is affected by the presence of a second molecule.

Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

Option 1

Option 2

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Standards Correlations

See all standards correlations for Agricultural Science with Vernier »

Agricultural Science with Vernier

See other experiments from the lab book.

1Introduction to Data Collection
2Acids and Bases
3Diffusion through Membranes
4Conducting Solutions
5Osmosis
6Respiration of Sugars by Yeast
7Reflection and Absorption of Light
8Soil pH
9Soil Salinity
10Soil Temperature
11Soil Moisture
12APhotosynthesis and Respiration (CO2)
12BPhotosynthesis and Respiration (O2)
12CPhotosynthesis and Respiration (CO2 and O2)
13Transpiration
14ACell Respiration (CO2)
14BCell Respiration (O2)
14CCell Respiration (CO2 and O2)
15The Greenhouse Effect
16Energy in Food
17AEnzyme Action: Testing Catalase Activity
17BEnzyme Action: Testing Catalase Activity
18ALactase Action
18BLactase Action
19Oxygen Gas and Human Respiration
20Biochemical Oxygen Demand
21Animal Temperature
22Lemon "Juice"
23Ohm's Law
24Energy Content of Fuels
25Photovoltaic Cells
26Wind Power
27Watershed Testing
28Interdependence of Plants and Animals
29Biodiversity and Ecosystems

Experiment 3 from Agricultural Science with Vernier Lab Book

<em>Agricultural Science with Vernier</em> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Dev Reference: VST0040

Go to top