Vernier Software and Technology
Vernier Software & Technology

Aerobic Respiration

Figure from experiment 17 from Biology with Vernier

Introduction

Aerobic cellular respiration is the process of converting the chemical energy of organic molecules into a form immediately usable by organisms. Glucose may be oxidized completely if sufficient oxygen is available, by the following reaction:

{{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{12}}}}{{\text{O}}_{\text{6}}} + {\text{ 6 }}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right) \to {\text{6 }}{{\text{H}}_{\text{2}}}{\text{O }} + {\text{ 6 C}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right) + {\text{ energy}}

All organisms, including plants and animals, oxidize glucose for energy. Often, this energy is used to convert ADP and phosphate into ATP. In this experiment, the rate of cellular respiration will be measured by monitoring the consumption of oxygen gas.

Many environmental variables might affect the rate of aerobic cellular respiration. Temperature changes have profound effects upon living things. Enzyme-catalyzed reactions are especially sensitive to small changes in temperature. Because of this, the metabolism of ectotherms, organisms whose internal body temperature is determined by their surroundings, are often determined by the surrounding temperature. In this experiment, you will determine the effect temperature changes have on the aerobic respiration of yeast.

Objectives

In this experiment, you will

  • Measure changes in dissolved oxygen concentration.
  • Study the effect of temperature on cellular respiration.
  • Make a plot of the rate of cellular respiration as a function of temperature.

Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

Option 1

Option 2

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Standards Correlations

See all standards correlations for Biology with Vernier »

Biology with Vernier

See other experiments from the lab book.

1Energy in Food
2Limitations on Cell Size: Surface Area to Volume
3Acids and Bases
4Diffusion through Membranes
5Conducting Solutions
6AEnzyme Action: Testing Catalase Activity
6BEnzyme Action: Testing Catalase Activity
7Photosynthesis
8The Effect of Alcohol on Biological Membranes
9Biological Membranes
10Transpiration
11ACell Respiration (O2)
11BCell Respiration (CO2)
11CCell Respiration (Pressure)
11DCell Respiration (CO2 and O2)
12ARespiration of Sugars by Yeast
12BSugar Fermentation
13Population Dynamics
14Interdependence of Plants and Animals
15Biodiversity and Ecosystems
16AEffect of Temperature on Respiration
16BEffect of Temperature on Fermentation
17Aerobic Respiration
18Acid Rain
19Dissolved Oxygen in Water
20Watershed Testing
21Physical Profile of a Lake
22Osmosis
23AEffect of Temperature on Cold-Blooded Organisms
23BEffect of Temperature on Cold-Blooded Organisms
24ALactase Action
24BLactase Action
25Primary Productivity
26Control of Human Respiration
27Heart Rate and Physical Fitness
28Monitoring EKG
29Ventilation and Heart Rate
30Oxygen Gas and Human Respiration
31APhotosynthesis and Respiration (O2)
31BPhotosynthesis and Respiration (CO2)
31CPhotosynthesis and Respiration (CO2 and O2)

Experiment 17 from Biology with Vernier Lab Book

<em>Biology with Vernier</em> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Go to top