Vernier Software and Technology
Vernier Software & Technology

Watershed Testing

Figure from experiment 20 from Biology with Vernier

Introduction

There are many reasons for determining water quality. You may want to compare the water quality upstream and downstream to locate a possible source of pollutants along a river or stream. Another reason may be to track the water quality of a watershed over time by making measurements periodically. When comparing the quality of a watershed at different times, it is important that measurements be taken from the same location and at the same time of day.

In 1970, the National Sanitation Foundation, in cooperation with 142 state and local environmental specialists and educators, devised a standard index for measuring water quality. This index, known as the Water Quality Index, or WQI, consists of nine tests to determine water quality. These nine tests are; temperature, pH, turbidity, total solids, dissolved oxygen, biochemical oxygen demand, phosphates, nitrate, and fecal coliform. A graph for each of the nine tests indicates the water quality value (or Q-value) corresponding to the data obtained. Once the Q-value for a test has been determined, it is multiplied by a weighting factor. Each of the tests is weighted based on its relative importance to a stream’s overall quality. The resulting values for all nine tests are totaled and used to gauge the stream’s health (excellent, good, medium, poor, or very poor).

For the purpose of this exercise, you will perform only four of the WQI tests: water temperature, dissolved oxygen, pH, and total dissolved solids. A modified version of the WQI for these four tests, will allow you to determine the general quality of the stream or lake you are sampling.

Objectives

In this experiment, you will

  • Use a Dissolved Oxygen, Temperature, Conductivity, and pH Probe to make on-site measurements.
  • Calculate the water quality based on your findings.

Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

Option 1

Option 2

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Standards Correlations

See all standards correlations for Biology with Vernier »

Biology with Vernier

See other experiments from the lab book.

1Energy in Food
2Limitations on Cell Size: Surface Area to Volume
3Acids and Bases
4Diffusion through Membranes
5Conducting Solutions
6AEnzyme Action: Testing Catalase Activity
6BEnzyme Action: Testing Catalase Activity
7Photosynthesis
8The Effect of Alcohol on Biological Membranes
9Biological Membranes
10Transpiration
11ACell Respiration (O2)
11BCell Respiration (CO2)
11CCell Respiration (Pressure)
11DCell Respiration (CO2 and O2)
12ARespiration of Sugars by Yeast
12BSugar Fermentation
13Population Dynamics
14Interdependence of Plants and Animals
15Biodiversity and Ecosystems
16AEffect of Temperature on Respiration
16BEffect of Temperature on Fermentation
17Aerobic Respiration
18Acid Rain
19Dissolved Oxygen in Water
20Watershed Testing
21Physical Profile of a Lake
22Osmosis
23AEffect of Temperature on Cold-Blooded Organisms
23BEffect of Temperature on Cold-Blooded Organisms
24ALactase Action
24BLactase Action
25Primary Productivity
26Control of Human Respiration
27Heart Rate and Physical Fitness
28Monitoring EKG
29Ventilation and Heart Rate
30Oxygen Gas and Human Respiration
31APhotosynthesis and Respiration (O2)
31BPhotosynthesis and Respiration (CO2)
31CPhotosynthesis and Respiration (CO2 and O2)

Experiment 20 from Biology with Vernier Lab Book

<em>Biology with Vernier</em> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Go to top