Vernier Software and Technology
Vernier Software & Technology

Effect of Temperature on Cold-Blooded Organisms

Figure from experiment 23A from Biology with Vernier

Introduction

In cold-blooded organisms, poikilotherms, there is a link between the temperature of the environment and the organism’s metabolic rate. Reptiles are a common example of a cold-blooded organism with which most people are familiar. If you have ever seen a lizard or snake in the early morning when the air and ground are cool, you may have noticed how slowly they move. They move slow when the environment is cold because they require heat from their surroundings to increase their internal temperature and metabolism. Once their internal body temperature has warmed, they can metabolize foods more quickly and produce the energy they need. Oxidative respiration is the process of metabolism where sugars are broken down. Under aerobic conditions, respiration yields chemical energy, carbon dioxide, and water.

{{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{12}}}}{{\text{O}}_{\text{6}}}{\text{ + 6 }}{{\text{O}}_{\text{2}}} \to {\text{6 C}}{{\text{O}}_{\text{2}}}{\text{ + 6 }}{{\text{H}}_{\text{2}}}{\text{O + energy}}
{\text{glucose + oxygen}} \to {\text{carbon dioxide + water + energy}}

Crickets will be used to study the effect of temperature on the metabolism of cold-blooded organisms. You will determine how temperature affects the respiration rate of crickets by monitoring oxygen gas consumption with an O2 Gas Sensor.

Objectives

In this experiment, you will

  • Use an O2 Gas Sensor to measure concentrations of oxygen gas.
  • Determine the rate of respiration by crickets at different temperatures.
  • Determine the effect of temperature on metabolism of crickets.

Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

Option 1

Option 2

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Standards Correlations

See all standards correlations for Biology with Vernier »

Biology with Vernier

See other experiments from the lab book.

1Energy in Food
2Limitations on Cell Size: Surface Area to Volume
3Acids and Bases
4Diffusion through Membranes
5Conducting Solutions
6AEnzyme Action: Testing Catalase Activity
6BEnzyme Action: Testing Catalase Activity
7Photosynthesis
8The Effect of Alcohol on Biological Membranes
9Biological Membranes
10Transpiration
11ACell Respiration (O2)
11BCell Respiration (CO2)
11CCell Respiration (Pressure)
11DCell Respiration (CO2 and O2)
12ARespiration of Sugars by Yeast
12BSugar Fermentation
13Population Dynamics
14Interdependence of Plants and Animals
15Biodiversity and Ecosystems
16AEffect of Temperature on Respiration
16BEffect of Temperature on Fermentation
17Aerobic Respiration
18Acid Rain
19Dissolved Oxygen in Water
20Watershed Testing
21Physical Profile of a Lake
22Osmosis
23AEffect of Temperature on Cold-Blooded Organisms
23BEffect of Temperature on Cold-Blooded Organisms
24ALactase Action
24BLactase Action
25Primary Productivity
26Control of Human Respiration
27Heart Rate and Physical Fitness
28Monitoring EKG
29Ventilation and Heart Rate
30Oxygen Gas and Human Respiration
31APhotosynthesis and Respiration (O2)
31BPhotosynthesis and Respiration (CO2)
31CPhotosynthesis and Respiration (CO2 and O2)

Experiment 23A from Biology with Vernier Lab Book

<em>Biology with Vernier</em> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Go to top