Vernier Software and Technology
Vernier Software & Technology

Diffusion through Membranes

Figure from experiment 4 from Biology with Vernier

Introduction

One way to measure the rate of diffusion of ions is to monitor their concentration in solution over a period of time. Since ions are electrically charged, water solutions containing ions will conduct electricity. A Conductivity Probe is capable of monitoring ions in solution. This probe however, will not measure the amount of electrically neutral molecules dissolved in water. Salts, such as sodium chloride, produce ions when they dissolve in water. If you place a salt solution in a container such as dialysis tubing, the salt can travel through the very small holes in the tubing. When dialysis tubing containing a solution of salt ions is placed into a beaker of water, the ions can diffuse out of the tubing and into the surrounding water. In this way, you will be able to measure the diffusion of salts in a solution of water and determine how concentration gradients and the presence of other particles affect the diffusion of the salt across a membrane.

Objectives

In this experiment, you will

  • Use a Conductivity Probe to measure the ionic concentration of various solutions.
  • Study the effect of concentration gradients on the rate of diffusion.
  • Determine if the diffusion rate for a molecule is affected by the presence of a second molecule.

Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

Option 1

Option 2

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Standards Correlations

See all standards correlations for Biology with Vernier »

Biology with Vernier

See other experiments from the lab book.

1Energy in Food
2Limitations on Cell Size: Surface Area to Volume
3Acids and Bases
4Diffusion through Membranes
5Conducting Solutions
6AEnzyme Action: Testing Catalase Activity
6BEnzyme Action: Testing Catalase Activity
7Photosynthesis
8The Effect of Alcohol on Biological Membranes
9Biological Membranes
10Transpiration
11ACell Respiration (O2)
11BCell Respiration (CO2)
11CCell Respiration (Pressure)
11DCell Respiration (CO2 and O2)
12ARespiration of Sugars by Yeast
12BSugar Fermentation
13Population Dynamics
14Interdependence of Plants and Animals
15Biodiversity and Ecosystems
16AEffect of Temperature on Respiration
16BEffect of Temperature on Fermentation
17Aerobic Respiration
18Acid Rain
19Dissolved Oxygen in Water
20Watershed Testing
21Physical Profile of a Lake
22Osmosis
23AEffect of Temperature on Cold-Blooded Organisms
23BEffect of Temperature on Cold-Blooded Organisms
24ALactase Action
24BLactase Action
25Primary Productivity
26Control of Human Respiration
27Heart Rate and Physical Fitness
28Monitoring EKG
29Ventilation and Heart Rate
30Oxygen Gas and Human Respiration
31APhotosynthesis and Respiration (O2)
31BPhotosynthesis and Respiration (CO2)
31CPhotosynthesis and Respiration (CO2 and O2)

Experiment 4 from Biology with Vernier Lab Book

<em>Biology with Vernier</em> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Go to top