Vernier Software and Technology
Vernier Software & Technology

The Determination of a Chemical Formula


John Dalton was an Englishman, a teacher, and an exceptional theoretical chemist. He developed and wrote the modern atomic theory at the turn of the 19th century (documents point to 1803). He was influenced by the experiments of two Frenchmen, Antoine Lavoisier and Joseph Louis Proust. A fundamental component of the modern atomic theory is that the mole ratios of elements in a compound will be small whole numbers (law of definite proportions). The whole number mole ratio is commonly referred to as the empirical formula of a compound.

One of the challenges in finding the proper chemical formula for a compound is that there may be more than one plausible mole ratio for the elements in that compound. Dalton called this the law of multiple proportions. For example, if you were testing a compound that contained iron and sulfur, the plausible chemical formula could be FeS or Fe2S3. However, if you determine the mass of iron and the mass of sulfur present in a given mass of the compound, you will be able to establish the true chemical formula of the compound.


In this experiment, you will

  • Determine the water of hydration in a copper chloride hydrate sample.
  • Conduct a reaction between a solution of copper chloride and solid aluminum.
  • Use the results of the reaction to determine the mass and moles of Cu and Cl in the reaction.
  • Calculate the empirical formula of the copper chloride compound.

Sensors and Equipment

No probeware required for this experiment.

Standards Correlations

See all standards correlations for Advanced Chemistry with Vernier »

Advanced Chemistry with Vernier

See other experiments from the lab book.

1The Determination of a Chemical Formula
2The Determination of the Percent Water in a Compound
3The Molar Mass of a Volatile Liquid
4Using Freezing-Point Depression to Find Molecular Weight
5The Molar Volume of a Gas
6Standardizing a Solution of Sodium Hydroxide
7Acid-Base Titration
8An Oxidation-Reduction Titration: The Reaction of Fe2+ and Ce4+
9Determining the Mole Ratios in a Chemical Reaction
10The Determination of an Equilibrium Constant
11Investigating Indicators
12The Decomposition of Hydrogen Peroxide
13Determining the Enthalpy of a Chemical Reaction
14ASeparation and Qualitative Analysis of Cations
14BSeparation and Qualitative Analysis of Anions
15AThe Synthesis of Alum
15BThe Analysis of Alum
16Conductimetric Titration and Gravimetric Determination of a Precipitate
17Determining the Concentration of a Solution: Beer's Law
18Liquid Chromatography
20Electrochemistry: Voltaic Cells
22The Synthesis and Analysis of Aspirin
23Determining the Ksp of Calcium Hydroxide
24Determining Ka by the Half-Titration of a Weak Acid
25The Rate and Order of a Chemical Reaction
26The Enthalpy of Neutralization of Phosphoric Acid
27α, β, and γ
28Radiation Shielding
29The Base Hydrolysis of Ethyl Acetate
30Exploring the Properties of Gases
31Determining Avogadro's Number
32Potentiometric Titration of Hydrogen Peroxide
33Determining the Half-Life of an Isotope
34Vapor Pressure and Heat of Vaporization
35Rate Determination and Activation Energy

Experiment 1 from Advanced Chemistry with Vernier Lab Book

<i>Advanced Chemistry with Vernier</i> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Dev Reference: VST0000

Go to top