Vernier Software and Technology
Vernier Software & Technology

Electrochemistry: Voltaic Cells

Figure from experiment 20 from Advanced Chemistry with Vernier

Introduction

In electrochemistry, a voltaic cell is a specially prepared system in which an oxidation-reduction reaction occurs spontaneously. This spontaneous reaction produces an easily measured electrical potential. Voltaic cells have a variety of uses.

In this experiment, you will prepare a variety of semi-microscale voltaic cells in a 24-well test plate. A voltaic cell is constructed by using two metal electrodes and solutions of their respective salts (the electrolyte component of the cell) with known molar concentrations. In Parts I and II of this experiment, you will use a Voltage Probe to measure the potential of a voltaic cell with copper and lead electrodes. You will then test two voltaic cells that have unknown metal electrodes and, through careful measurements of the cell potentials, identify the unknown metals. In Part III of the experiment, you will measure the potential of a special type of voltaic cell called a concentration cell. In the first concentration cell, you will observe how a voltaic cell can maintain a spontaneous redox reaction with identical copper metal electrodes, but different electrolyte concentrations. You will then measure the potential of a second concentration cell and use the Nernst equation to calculate the solubility product constant, Ksp, for lead iodide, PbI2.

Objectives

In this experiment, you will

  • Prepare a Cu-Pb voltaic cell and measure its potential.
  • Test two voltaic cells that use unknown metal electrodes and identify the metals.
  • Prepare a copper concentration cell and measure its potential.
  • Prepare a lead concentration cell and measure its potential.
  • Use the Nernst equation to calculate the Ksp of PbI2.

Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

Option 1

Option 2

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Standards Correlations

See all standards correlations for Advanced Chemistry with Vernier »

Advanced Chemistry with Vernier

See other experiments from the lab book.

1The Determination of a Chemical Formula
2The Determination of the Percent Water in a Compound
3The Molar Mass of a Volatile Liquid
4Using Freezing-Point Depression to Find Molecular Weight
5The Molar Volume of a Gas
6Standardizing a Solution of Sodium Hydroxide
7Acid-Base Titration
8An Oxidation-Reduction Titration: The Reaction of Fe2+ and Ce4+
9Determining the Mole Ratios in a Chemical Reaction
10The Determination of an Equilibrium Constant
11Investigating Indicators
12The Decomposition of Hydrogen Peroxide
13Determining the Enthalpy of a Chemical Reaction
14ASeparation and Qualitative Analysis of Cations
14BSeparation and Qualitative Analysis of Anions
15AThe Synthesis of Alum
15BThe Analysis of Alum
16Conductimetric Titration and Gravimetric Determination of a Precipitate
17Determining the Concentration of a Solution: Beer's Law
18Liquid Chromatography
19Buffers
20Electrochemistry: Voltaic Cells
21Electroplating
22The Synthesis and Analysis of Aspirin
23Determining the Ksp of Calcium Hydroxide
24Determining Ka by the Half-Titration of a Weak Acid
25The Rate and Order of a Chemical Reaction
26The Enthalpy of Neutralization of Phosphoric Acid
27α, β, and γ
28Radiation Shielding
29The Base Hydrolysis of Ethyl Acetate
30Exploring the Properties of Gases
31Determining Avogadro's Number
32Potentiometric Titration of Hydrogen Peroxide
33Determining the Half-Life of an Isotope
34Vapor Pressure and Heat of Vaporization
35Rate Determination and Activation Energy

Experiment 20 from Advanced Chemistry with Vernier Lab Book

<i>Advanced Chemistry with Vernier</i> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Go to top