Vernier Software and Technology
Vernier Software & Technology

Radiation Shielding

Introduction

Alpha, beta, gamma, and X-rays can pass through matter, but can also be absorbed or scattered in varying degrees, depending on the material and on the type and energy of the radiation. Medical X-ray images are possible because bones absorb X-rays more than soft tissues. Strongly radioactive sources are often stored in lead boxes to shield the local environment from the radiation.

Some materials absorb beta rays. A sheet of common cardboard will absorb some of the betas, but will allow most to pass through. You can measure this absorption by fixing a beta source and a radiation monitor so their positions do not change, and then inserting layers of cardboard between them.

When an absorber is in the path of beta rays, it will allow a certain fraction, ƒ, to pass through. The fraction depends on the density and thickness of the absorber, but will be a constant for identical absorbers and fixed beta-ray energy. If the number of counts detected in a count interval is N0 when no absorber is in place, then the counts, N, with the absorber, will be N = ƒ N0. In the preliminary questions, you will develop a more general expression for additional layers of cardboard absorbers, and then test it against real data.

You will use a small source of beta radiation for this experiment. Beta rays are high-energy electrons. Follow all local procedures for handling radioactive materials.

Objectives

In this experiment, you will

  • Develop a model for the absorption of beta radiation by matter.
  • Use a radiation counter to study how the radiation emitted by a beta source is absorbed by cardboard.
  • Test the model against experimental data to determine its validity.

Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Standards Correlations

See all standards correlations for Advanced Chemistry with Vernier »

Advanced Chemistry with Vernier

See other experiments from the lab book.

1The Determination of a Chemical Formula
2The Determination of the Percent Water in a Compound
3The Molar Mass of a Volatile Liquid
4Using Freezing-Point Depression to Find Molecular Weight
5The Molar Volume of a Gas
6Standardizing a Solution of Sodium Hydroxide
7Acid-Base Titration
8An Oxidation-Reduction Titration: The Reaction of Fe2+ and Ce4+
9Determining the Mole Ratios in a Chemical Reaction
10The Determination of an Equilibrium Constant
11Investigating Indicators
12The Decomposition of Hydrogen Peroxide
13Determining the Enthalpy of a Chemical Reaction
14ASeparation and Qualitative Analysis of Cations
14BSeparation and Qualitative Analysis of Anions
15AThe Synthesis of Alum
15BThe Analysis of Alum
16Conductimetric Titration and Gravimetric Determination of a Precipitate
17Determining the Concentration of a Solution: Beer's Law
18Liquid Chromatography
19Buffers
20Electrochemistry: Voltaic Cells
21Electroplating
22The Synthesis and Analysis of Aspirin
23Determining the Ksp of Calcium Hydroxide
24Determining Ka by the Half-Titration of a Weak Acid
25The Rate and Order of a Chemical Reaction
26The Enthalpy of Neutralization of Phosphoric Acid
27α, β, and γ
28Radiation Shielding
29The Base Hydrolysis of Ethyl Acetate
30Exploring the Properties of Gases
31Determining Avogadro's Number
32Potentiometric Titration of Hydrogen Peroxide
33Determining the Half-Life of an Isotope
34Vapor Pressure and Heat of Vaporization
35Rate Determination and Activation Energy

Experiment 28 from Advanced Chemistry with Vernier Lab Book

<i>Advanced Chemistry with Vernier</i> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Go to top