Vernier Software and Technology
Vernier Software & Technology

The Base Hydrolysis of Ethyl Acetate

Figure from experiment 29 from Advanced Chemistry with Vernier

Introduction

The reaction of ethyl acetate and hydroxide ions yields ethanol and acetate ions, as shown below.

{\text{C}}{{\text{H}}_{\text{3}}}{\text{COO}}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{(aq)  +  O}}{{\text{H}}^{\text{ - }}}{\text{(aq)}} \to {\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH(aq)  +  C}}{{\text{H}}_{\text{3}}}{\text{CO}}{{\text{O}}^{\text{ - }}}{\text{(aq)}}

The progress of this reaction can be observed by monitoring the conductivity of the reaction mixture. Although the reactants and products each contain an ion, the OH ion has a higher ionic mobility than the CH3COO ion. This results in a net decrease in the conductivity of the reaction mixture as the reaction proceeds.

Ethyl acetate is the major active ingredient in commercial acetone-free, nail-polish removers. The molar concentration of CH3COOC2H5 in this product is 0.10 M. You can successfully use one of these over-the-counter products in this experiment. The primary objective of this experiment is to conduct a series of reactions from which you will determine the rate law expression for the base hydrolysis of ethyl acetate.

Objectives

In this experiment, you will

  • Conduct the base hydrolysis of ethyl acetate under various conditions.
  • Calculate the rate law constant, k, for the reaction.
  • Determine the rate law expression for the reaction.

Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Standards Correlations

See all standards correlations for Advanced Chemistry with Vernier »

Advanced Chemistry with Vernier

See other experiments from the lab book.

1The Determination of a Chemical Formula
2The Determination of the Percent Water in a Compound
3The Molar Mass of a Volatile Liquid
4Using Freezing-Point Depression to Find Molecular Weight
5The Molar Volume of a Gas
6Standardizing a Solution of Sodium Hydroxide
7Acid-Base Titration
8An Oxidation-Reduction Titration: The Reaction of Fe2+ and Ce4+
9Determining the Mole Ratios in a Chemical Reaction
10The Determination of an Equilibrium Constant
11Investigating Indicators
12The Decomposition of Hydrogen Peroxide
13Determining the Enthalpy of a Chemical Reaction
14ASeparation and Qualitative Analysis of Cations
14BSeparation and Qualitative Analysis of Anions
15AThe Synthesis of Alum
15BThe Analysis of Alum
16Conductimetric Titration and Gravimetric Determination of a Precipitate
17Determining the Concentration of a Solution: Beer's Law
18Liquid Chromatography
19Buffers
20Electrochemistry: Voltaic Cells
21Electroplating
22The Synthesis and Analysis of Aspirin
23Determining the Ksp of Calcium Hydroxide
24Determining Ka by the Half-Titration of a Weak Acid
25The Rate and Order of a Chemical Reaction
26The Enthalpy of Neutralization of Phosphoric Acid
27α, β, and γ
28Radiation Shielding
29The Base Hydrolysis of Ethyl Acetate
30Exploring the Properties of Gases
31Determining Avogadro's Number
32Potentiometric Titration of Hydrogen Peroxide
33Determining the Half-Life of an Isotope
34Vapor Pressure and Heat of Vaporization
35Rate Determination and Activation Energy

Experiment 29 from Advanced Chemistry with Vernier Lab Book

<i>Advanced Chemistry with Vernier</i> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Go to top