Vernier Software and Technology
Vernier Software & Technology

Determining Avogadro's Number

Figure from experiment 31 from Advanced Chemistry with Vernier


The basic counting unit in chemistry, the mole, has a special name, Avogadro’s number, in honor of the Italian scientist Amadeo Avogadro (1776-1856). The commonly accepted definition of Avogadro’s number is the number of atoms in exactly 12 g of the isotope 12C, and the quantity itself is 6.02214199 × 1023.

A bit of information about Avogadro seems appropriate. His full name was Lorenzo Romano Amedeo Carlo Avogadro (almost a mole of letters in his name). He was a practicing lawyer until 1806 when he began his new career teaching physics and math at the University of Turin, where he was later promoted to the chair of physical chemistry. In 1811, Avogadro published a paper in the Journal de Physique, entitled “Essay on a Manner of Determining the Relative Masses of the Elementary Molecules of Bodies, and the Proportions in Which They Enter into These Compounds,” which pretty much says it all. This paper includes the statement that has come to be regarded as Avogadro’s Hypothesis:

The first hypothesis to present itself in this connection, and apparently even the only admissible one, is the supposition that the number of integral molecules in any gases is always the same for equal volumes, or always proportional to the volumes. Indeed, if we were to suppose that the number of molecules contained in a given volume were different for different gases, it would scarcely be possible to conceive that the law regulating the distance of molecules could give in all cases relations as simple as those which the facts just detailed compel us to acknowledge between the volumes and the number of molecules.

In this experiment, you will confirm Avogadro’s number by conducting an electrochemical process called electrolysis. In electrolysis, an external power supply is used to drive an otherwise nonspontaneous reaction. You will use a copper strip and a zinc strip as the electrodes, placed in a beaker of sulfuric acid. You will make the cell electrolytic by using the copper strip as the anode and the zinc strip as the cathode. By determining the average current used in the reaction, along with the knowledge that all of the copper ions formed are the 2+ cations, you will calculate the number of atoms in one mole of copper and compare this value with Avogadro’s number.


In this experiment, you will

  • Prepare an electrochemical cell to oxidize a copper electrode.
  • Measure the amount of copper that was deposited in the electroplating process and determine the average current used.
  • Calculate a value for Avogadro's number and compare it to the accepted value.

Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

Option 1

Option 2

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Standards Correlations

See all standards correlations for Advanced Chemistry with Vernier »

Advanced Chemistry with Vernier

See other experiments from the lab book.

1The Determination of a Chemical Formula
2The Determination of the Percent Water in a Compound
3The Molar Mass of a Volatile Liquid
4Using Freezing-Point Depression to Find Molecular Weight
5The Molar Volume of a Gas
6Standardizing a Solution of Sodium Hydroxide
7Acid-Base Titration
8An Oxidation-Reduction Titration: The Reaction of Fe2+ and Ce4+
9Determining the Mole Ratios in a Chemical Reaction
10The Determination of an Equilibrium Constant
11Investigating Indicators
12The Decomposition of Hydrogen Peroxide
13Determining the Enthalpy of a Chemical Reaction
14ASeparation and Qualitative Analysis of Cations
14BSeparation and Qualitative Analysis of Anions
15AThe Synthesis of Alum
15BThe Analysis of Alum
16Conductimetric Titration and Gravimetric Determination of a Precipitate
17Determining the Concentration of a Solution: Beer's Law
18Liquid Chromatography
20Electrochemistry: Voltaic Cells
22The Synthesis and Analysis of Aspirin
23Determining the Ksp of Calcium Hydroxide
24Determining Ka by the Half-Titration of a Weak Acid
25The Rate and Order of a Chemical Reaction
26The Enthalpy of Neutralization of Phosphoric Acid
27α, β, and γ
28Radiation Shielding
29The Base Hydrolysis of Ethyl Acetate
30Exploring the Properties of Gases
31Determining Avogadro's Number
32Potentiometric Titration of Hydrogen Peroxide
33Determining the Half-Life of an Isotope
34Vapor Pressure and Heat of Vaporization
35Rate Determination and Activation Energy

Experiment 31 from Advanced Chemistry with Vernier Lab Book

<i>Advanced Chemistry with Vernier</i> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Go to top