Vernier Software and Technology
Vernier Software & Technology

Energy Content of Fuels

Figure from experiment 17 from Chemistry with Vernier

Introduction

In this experiment, you will find and compare the heat of combustion of two different fuels: paraffin wax and ethanol. Paraffin is a member of a group of compounds called alkanes that are composed entirely of carbon and hydrogen atoms. Many alkanes, such as gasoline and diesel oil, are important fuels. Ethanol, C2H5OH, is used as a gasoline additive (gasohol) and as a gasoline substitute. In this experiment, you will compare the energy content of paraffin and ethanol by measuring their heats of combustion in kJ/g of fuel.

In order to find the heat of combustion, you will first use the energy from burning ethanol or paraffin to heat a known quantity of water. By monitoring the temperature of the water, you can find the amount of heat transferred to it, using the formula

q = C_p \cdot m \cdot \Delta t

where q is heat, Cp is the specific heat capacity of water, m is the mass of water, and Δt is the change in temperature of the water. Finally, the amount of fuel burned will be taken into account by calculating the heat per gram of fuel consumed in the combustion.

Objectives

In this experiment, you will

  • Compare the heat of combustion for paraffin wax and ethanol.
  • Calculate the heat of combustion and percent efficiency for both fuels.

Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

Option 1

Option 2

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Standards Correlations

See all standards correlations for Chemistry with Vernier »

Chemistry with Vernier

See other experiments from the lab book.

1Endothermic and Exothermic Reactions
2Freezing and Melting of Water
3Another Look at Freezing Temperature
4Heat of Fusion of Ice
5Find the Relationship: An Exercise in Graphing Analysis
6Boyle's Law: Pressure-Volume Relationship in Gases
7Pressure-Temperature Relationship in Gases
8Fractional Distillation
9Evaporation and Intermolecular Attractions
10Vapor Pressure of Liquids
11Determining the Concentration of a Solution: Beer's Law
12Effect of Temperature on Solubility of a Salt
13Properties of Solutions: Electrolytes and Non-Electrolytes
14Conductivity of Solutions: The Effect of Concentration
15Using Freezing Point Depression to Find Molecular Weight
16Energy Content of Foods
17Energy Content of Fuels
18Additivity of Heats of Reaction: Hess's Law
19Heat of Combustion: Magnesium
20Chemical Equilibrium: Finding a Constant, Kc
21Household Acids and Bases
22Acid Rain
23Titration Curves of Strong and Weak Acids and Bases
24Acid-Base Titration
25Titration of a Diprotic Acid: Identifying an Unknown
26Using Conductivity to Find an Equivalence Point
27Acid Dissociation Constant, Ka
28Establishing a Table of Reduction Potentials: Micro-Voltaic Cells
29Lead Storage Batteries
30Rate Law Determination of the Crystal Violet Reaction
31Time-Release Vitamin C Tablets
32The Buffer in Lemonade
33Determining the Free Chlorine Content of Swimming Pool Water
34Determining the Quantity of Iron in a Vitamin Tablet
35Determining the Phosphoric Acid Content in Soft Drinks
36Microscale Acid-Base Titration

Experiment 17 from Chemistry with Vernier Lab Book

<em>Chemistry with Vernier</em> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Go to top