Vernier Software and Technology
Vernier Software & Technology

Behavior of a Gas

Introduction

We think of a gas as a collection of tiny particles in random, thermal motion. When they collide with the sides of a container, they exert a force on the container walls. The average force resulting from these collisions on each unit area of the container is called the pressure exerted by the gas. You are familiar with everyday units of pressure, such as psi (pounds per square inch) to describe tire pressure or inches of mercury to describe atmospheric pressure. For this experiment, we will use the SI unit of pressure, the pascal, which is defined as one Newton of force acting on each square meter of surface. Since the Newton is smaller than a pound and a square meter is much larger than a square inch, we will use kilopascals, kPa, to describe the pressure of a gas.

You will certainly recognize what variables might affect the pressure of a gas in a container. In this experiment, you will develop quantitative relationships between pressure and these variables.

Objectives

In this experiment, you will

  • Collect pressure vs. volume, pressure vs. number, and pressure vs. temperature data for a sample of air in an enclosed container.
  • Determine relationships between these pairs of variables.
  • Determine a single expression relating these variables.
  • Determine the constant of proportionality for the relationship between pressure, volume, and temperature.
  • Use kinetic molecular theory (KMT) to model the behavior of the gas at various points on each graph.

Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Advanced Physics with Vernier — Beyond Mechanics

See other experiments from the lab book.

1Behavior of a Gas
2Heat Engines
3Standing Waves on a String
4Standing Waves in a Column of Air
5Doppler Effect
6Electrostatics
7Coulomb's Law
8Mapping Electric Potential
9Factors Affecting Electrical Resistance
10Series and Parallel Circuits
11Faraday’s Law: Moving Magnet
12Faraday’s Law: Alternating Current
13Capacitors and Inductors
14RLC Circuits
15Curved Mirrors and Images
16Thin Lenses and Real Images
17Thin Lenses and Virtual Images
18Aperture and Depth of Field
19Interference
20Diffraction
21Spectrum of Atomic Hydrogen
22Planck’s Constant

Experiment 1 from Advanced Physics with Vernier — Beyond Mechanics Lab Book

<i>Advanced Physics with Vernier — Beyond Mechanics</i> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Go to top