Vernier Software and Technology
Vernier Software & Technology

Graph Matching

Figure from experiment 1 from Physics with Vernier

Introduction

One of the most effective methods of describing motion is to plot graphs of position, velocity, and acceleration vs. time. From such a graphical representation, it is possible to determine in what direction an object is going, how fast it is moving, how far it traveled, and whether it is speeding up or slowing down. In this experiment, you will use a Motion Detector to determine this information by plotting a real-time graph of your motion as you move across the classroom.

The Motion Detector measures the time it takes for a high-frequency sound pulse to travel from the detector to an object and back. Using this round-trip time and the speed of sound, the interface can determine the distance to the object; that is, its position. It can then use the change in position to calculate the object’s velocity and acceleration. All of this information can be displayed in a graph. A qualitative analysis of the graphs of your motion will help you develop an understanding of the concepts of kinematics.

Objectives

  • Analyze the motion of a student walking across the room.
  • Predict, sketch, and test position vs. time kinematics graphs.
  • Predict, sketch, and test velocity vs. time kinematics graphs.

Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

Option 1

Option 2

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Standards Correlations

See all standards correlations for Physics with Vernier »

Physics with Vernier

See other experiments from the lab book.

1Graph Matching
2ABack and Forth Motion
2BBack and Forth Motion
3ACart on a Ramp
3BCart on a Ramp
4ADetermining g on an Incline
4BDetermining g on an Incline
5Picket Fence Free Fall
6Ball Toss
7Bungee Jump Accelerations
8AProjectile Motion (Photogates)
8BProjectile Motion (Projectile Launcher)
9Newton's Second Law
10Atwood's Machine
11Newton's Third Law
12Static and Kinetic Friction
13Air Resistance
14Pendulum Periods
15Simple Harmonic Motion
16Energy of a Tossed Ball
17Energy in Simple Harmonic Motion
18AMomentum, Energy and Collisions
18BMomentum, Energy and Collisions
19AImpulse and Momentum
19BImpulse and Momentum
20Centripetal Accelerations on a Turntable
21Accelerations in the Real World
22Ohm's Law
23Series and Parallel Circuits
24Capacitors
25The Magnetic Field in a Coil
26The Magnetic Field in a Slinky
27Electrical Energy
28APolarization of Light
28BPolarization of Light (Rotary Motion Sensor)
29Light, Brightness and Distance
30Newton's Law of Cooling
31The Magnetic Field of a Permanent Magnet
32Sound Waves and Beats
33Speed of Sound
34Tones, Vowels and Telephones
35Mathematics of Music

Experiment 1 from Physics with Vernier Lab Book

<i>Physics with Vernier</i> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Go to top