Vernier Software and Technology
Vernier Software & Technology

Newton's Third Law

Figure from experiment 11 from Physics with Vernier

Introduction

You may have learned this statement of Newton’s third law: “To every action there is an equal and opposite reaction.” What does this sentence mean? This experiment will help you investigate this question.

Unlike Newton’s first two laws of motion, which concern only individual objects, the third law describes an interaction between two bodies. For example, what if you pull on your partner’s hand with your hand? To study this interaction, you can use two Force Sensors. As one object (your hand) pushes or pulls on another object (your partner’s hand), the Force Sensors will record those pushes and pulls. They will be related in a very simple way as predicted by Newton’s third law.

The action referred to in the phrase above is the force applied by your hand, and the reaction is the force that is applied by your partner’s hand. Together, they are known as a force pair. This short experiment will show how the forces are related.

Objectives

  • Observe the directional relationship between force pairs.
  • Observe the time variation of force pairs.
  • Explain Newton’s third law in simple language.

Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Standards Correlations

See all standards correlations for Physics with Vernier »

Physics with Vernier

See other experiments from the lab book.

1Graph Matching
2ABack and Forth Motion
2BBack and Forth Motion
3ACart on a Ramp
3BCart on a Ramp
4ADetermining g on an Incline
4BDetermining g on an Incline
5Picket Fence Free Fall
6Ball Toss
7Bungee Jump Accelerations
8AProjectile Motion (Photogates)
8BProjectile Motion (Projectile Launcher)
9Newton's Second Law
10Atwood's Machine
11Newton's Third Law
12Static and Kinetic Friction
13Air Resistance
14Pendulum Periods
15Simple Harmonic Motion
16Energy of a Tossed Ball
17Energy in Simple Harmonic Motion
18AMomentum, Energy and Collisions
18BMomentum, Energy and Collisions
19AImpulse and Momentum
19BImpulse and Momentum
20Centripetal Accelerations on a Turntable
21Accelerations in the Real World
22Ohm's Law
23Series and Parallel Circuits
24Capacitors
25The Magnetic Field in a Coil
26The Magnetic Field in a Slinky
27Electrical Energy
28APolarization of Light
28BPolarization of Light (Rotary Motion Sensor)
29Light, Brightness and Distance
30Newton's Law of Cooling
31The Magnetic Field of a Permanent Magnet
32Sound Waves and Beats
33Speed of Sound
34Tones, Vowels and Telephones
35Mathematics of Music

Experiment 11 from Physics with Vernier Lab Book

<i>Physics with Vernier</i> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Go to top