Vernier Software & Technology

# Ball Toss

## Introduction

When a juggler tosses a ball straight upward, the ball slows down until it reaches the top of its path. The ball then speeds up on its way back down. A graph of its velocity vs. time would show these changes. Is there a mathematical pattern to the changes in velocity? What is the accompanying pattern to the position vs. time graph? What would the acceleration vs. time graph look like?

In this experiment, you will use a Motion Detector to collect position, velocity, and acceleration data for a ball thrown straight upward. Analysis of the graphs of this motion will answer the questions asked above.

## Objectives

• Collect position, velocity, and acceleration data as a ball travels straight up and down.
• Analyze position vs. time, velocity vs. time, and acceleration vs. time graphs.
• Determine the best-fit equations for the position vs. time and velocity vs. time graphs.
• Determine the mean acceleration from the acceleration vs. time graph.

## Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

You may also need an interface and software for data collection. What do I need for data collection?

## Physics with Vernier

See other experiments from the lab book.

 1 Graph Matching 2A Back and Forth Motion 2B Back and Forth Motion 3A Cart on a Ramp 3B Cart on a Ramp 4A Determining g on an Incline 4B Determining g on an Incline 5 Picket Fence Free Fall 6 Ball Toss 7 Bungee Jump Accelerations 8A Projectile Motion (Photogates) 8B Projectile Motion (Projectile Launcher) 9 Newton's Second Law 10 Atwood's Machine 11 Newton's Third Law 12 Static and Kinetic Friction 13 Air Resistance 14 Pendulum Periods 15 Simple Harmonic Motion 16 Energy of a Tossed Ball 17 Energy in Simple Harmonic Motion 18A Momentum, Energy and Collisions 18B Momentum, Energy and Collisions 19A Impulse and Momentum 19B Impulse and Momentum 20 Centripetal Accelerations on a Turntable 21 Accelerations in the Real World 22 Ohm's Law 23 Series and Parallel Circuits 24 Capacitors 25 The Magnetic Field in a Coil 26 The Magnetic Field in a Slinky 27 Electrical Energy 28A Polarization of Light 28B Polarization of Light (Rotary Motion Sensor) 29 Light, Brightness and Distance 30 Newton's Law of Cooling 31 The Magnetic Field of a Permanent Magnet 32 Sound Waves and Beats 33 Speed of Sound 34 Tones, Vowels and Telephones 35 Mathematics of Music

### Experiment 6 from Physics with Vernier Lab Book

#### Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.