Vernier Software and Technology
Vernier Software & Technology

Chill Out: How Hot Objects Cool

Figure from experiment 17 from Real-World Math Made Easy

Introduction

When you have a hot drink, you know that it gradually cools off. Newton’s law of cooling provides us with a model for cooling. It states that the temperature difference Tdiff between a hot object and its surroundings decreases exponentially with time.

{T_{diff}} = {T_0}{e^{ - kt}}

In the model T0 is the initial temperature difference, and k is a positive constant.

In this activity you will use a Temperature Probe to collect data as the warmed probe cools. You can then fit several mathematical models to the data.

Objectives

  • Record temperature versus time cooling data.
  • Model cooling data with an exponential function.

Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

Option 1

Option 2

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Standards Correlations

See all standards correlations for Real-World Math Made Easy »

Real-World Math Made Easy

See other experiments from the lab book.

1Walk the Line - Straight Line Distance Graphs
2Making Cents of Math: Linear Relationship between Weight and Quantity
3Pool Plunge - Linear Relationship between Water Depth and Pressure
4Funnel Volumes - Volume and Weight
5Keep It Bottled Up - Rates of Pressure Increase
6Graph It in Pieces: Piecewise Defined Functions
7Mix It Up - Mixing Liquids of Different Temperatures
8Spring Thing - Newton's Second Law
9Stretch It to the Limit - The Linear Force Relation for a Rubber Band
10What Goes Up - Position and Time for a Cart on a Ramp
11That's the Way the Ball Bounces - Height and Time for a Bouncing Ball
12Walk This Way - Definition of Rate
13Velocity Test - Interpreting Graphs
14From Here to There - Applications of the Distance Formula
15Under Pressure - The Inverse Relationship between Pressure and Volume
16Light at A Distance - Distance and Intensity
17Chill Out: How Hot Objects Cool
18Charging Up, Charging Down - Charging a Capacitor
19Bounce Back - The Pattern of Rebound Heights
20Sour Chemistry - The Exponential pH Change
21Stepping to the Greatest Integer: The Greatest Integer Function
22Swinging Ellipses - Plotting an Ellipse
23Crawling Around: Parametric Plots
24Lights Out! - Periodic Phenomena
25Tic, Toc: Pendulum Motion
26Stay Tuned: Sound Waveform Models
27Up And Down: Damped Harmonic Motion
28How Tall? Describing Data with Statistical Plots
29And Now, the Weather - Describing Data with Statistics
30Meet You at the Intersection: Solving a System of Linear Equations
31Titration Curves: An Application of the Logistic Function

Experiment 17 from Real-World Math Made Easy Lab Book

<i>Real-World Math Made Easy</i> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Go to top