Vernier Software and Technology
Vernier Software & Technology

Chill Out: How Hot Objects Cool

Figure from experiment 16 from Real-World Math with Vernier

Introduction

When you have a hot drink, you know that it gradually cools off. Newton’s law of cooling provides us with a model for cooling. It states that the temperature difference Tdiff between a hot object and its surroundings decreases exponentially with time.

{T_{diff}} = {T_0}{e^{ - kt}}

In the model T0 is the initial temperature difference, and k is a positive constant.

In this activity you will use a Temperature Probe to collect data as the warmed probe cools. You can then fit several mathematical models to the data.

Objectives

  • Record temperature versus time cooling data.
  • Model cooling data with an exponential function.

Sensors and Equipment

This activity features the following Vernier sensors and equipment.

Option 1

Option 2

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Standards Correlations

See all standards correlations for Real-World Math with Vernier »

Real-World Math with Vernier

See other experiments from the lab book.

1Walk the Line - Straight Line Distance Graphs
2Making Cents of Math: Linear Relationship between Weight and Quantity
3Pool Plunge - Linear Relationship between Water Depth and Pressure
4Funnel Volumes - Volume and Weight
5Keep It Bottled Up - Rates of Pressure Increase
6Mix It Up - Mixing Liquids of Different Temperatures
7Spring Thing - Newton's Second Law
8Stretch It to the Limit - The Linear Force Relation for a Rubber Band
9What Goes Up - Position and Time for a Cart on a Ramp
10That's the Way the Ball Bounces - Height and Time for a Bouncing Ball
11Walk This Way - Definition of Rate
12Velocity Test - Interpreting Graphs
13From Here to There - Applications of the Distance Formula
14Under Pressure - The Inverse Relationship between Pressure and Volume
15Light at A Distance - Distance and Intensity
16Chill Out: How Hot Objects Cool
17Charging Up, Charging Down - Charging a Capacitor
18Bounce Back - The Pattern of Rebound Heights
19Sour Chemistry - The Exponential pH Change
20Swinging Ellipses - Plotting an Ellipse
21Lights Out! - Periodic Phenomena
22Tic, Toc: Pendulum Motion
23Stay Tuned: Sound Waveform Models
24Up And Down: Damped Harmonic Motion
25How Tall? Describing Data with Statistical Plots
26And Now, the Weather - Describing Data with Statistics
27Meet You at the Intersection: Solving a System of Linear Equations
28Titration Curves: An Application of the Logistic Function
29Clock Design: Period and Length of a Simple Pendulum
30Graph It in Pieces: Piecewise Defined Functions
31Stepping to the Greatest Integer: The Greatest Integer Function
32Crawling Around: Parametric Plots

Activity 16 from Real-World Math with Vernier Lab Book

<i>Real-World Math with Vernier</i> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Go to top