Vernier Software and Technology
Vernier Software & Technology
Vernier News

News Home

Decoding Your Absorbance Readings

In an effort to help you and your students better understand spectrometer absorbance readings, we’ve collected a few commonly asked questions:

Why don’t absorbance readings have units?

Absorbance readings are unitless because they are calculated from a ratio of the intensity of light transmitted through the sample (I) to the intensity of light transmitted through a blank (Io). This ratio results in a unitless value.
Absorbance = log (Io/I)

Why are absorbance readings most accurate between 0.1 and 1?

Remember that absorbance is the logarithm of the transmission of light through a sample. Transmission (T) is the ratio of the intensity of light transmitted through the sample (I) to the intensity of light transmitted through a blank (Io). Therefore, absorbance = log (Io/I).

At an absorbance of 2 you are at 1%T, which means that 99% of available light is being blocked (absorbed) by the sample. At an ABS of 3 you are at 0.1% T, which means that 99.9% of the available light is being blocked (absorbed) by the sample. Such small amounts of light are very difficult to detect and are outside the meaningful range of most spectrometers.

Vernier array spectrometers and colorimeters have a useful absorbance range between 0.1 and 1.0. Any absorbance reading above 1 can be inaccurate. There are spectrometers that will report meaningful values at absorbance ranges above 1.0, but these are research instruments that are also quite expensive. In most classroom settings, the best option is to simply dilute your samples to ensure they are in this range.

How important is it to use a quartz cuvette for absorbance readings in the UV?

It depends on how accurate you want your absorbance readings to be. UV plastic cuvettes are less expensive and have practical applications when working with students, but they lose transparency quickly in the UV. Most are only rated to 280 nm. If you want the most accurate data possible below 280 nm, a quartz cuvette is the best option. Another unfortunate side effect of using UV-plastic cuvettes is that students commonly confuse them with visible-only plastic cuvettes. This cuts out all UV light, so data will be very poor. If you are going to use UV-plastic cuvettes, make sure you are using them for the proper applications.

Why You Should Attend Your Local ACS Meetings

Are you a member of the American Chemical Society (ACS)? I’ve been a member for 10 years and currently serve as the Secretary for the local Portland Section. ACS is a scientific society of chemistry professionals that includes students, educators, and industrial chemists.

Each year ACS hosts two national meetings; one in the spring and one in the fall. The national meetings offer the opportunity to discover and share knowledge through posters, presentations, and training workshops. The expo features hundreds of exhibitors showcasing new technological developments. The ACS Career Fair at the national meetings offer access to ACS career consultants and a career fair for job seekers and employers. I found my current career here at Vernier Software & Technology through the ACS Career Fair.

There are also several regional meetings that are organized by ACS Local Sections. These meetings also feature technical programs on a variety of topics, poster sessions, expositions, and social events. The smaller size of an ACS regional meeting allows for a greater opportunity for interactions and costs less to attend than a national meeting. Take advantage of the opportunity to attend a regional meeting.

I attended the Northwest (NORM) Regional Meeting from June 24–27 on the campus of the Pacific Northwest National Lab in Richland, WA. The theme was Powering the Future: Energy, Environment, Education. I co-presented a talk with Prof. Karen Goodwin from Centralia College about Data Acquisition in the Chemistry Lab. It highlighted the benefits of using data logging for several common general chemistry experiments such as gas laws, acid-base titrations, and electrochemistry. Our goal was to show that using data-acquisition tools results in fewer possibilities of transcription errors and combines the power of graphical visualization and mathematical data analysis.

Boyle's Law

My next talk will be at the Fall National Meeting that takes place in Boston, Aug 19–23, 2018. I will be presenting a talk on using kitchen chemistry and technology to engage K–12 and college students. I hope to meet you there. If you are interested in attending, here are the details.

  • PAPER TITLE: Using kitchen chemistry and technology to engage K–12 and college students (CHED 137)
  • DAY & TIME OF PRESENTATION: Monday, August, 20, 2018 from 3:45 PM–4:05 PM
  • ROOM & LOCATION: Cambridge 1/2 – Seaport World Trade Center

Calibrating a Drop Counter

Calibrating a Drop Counter

Did you know that you really can’t calibrate a Vernier Drop Counter? Instead, you are actually calibrating the tip of the titrant reservoir.

The Vernier Drop Counter is a modified photogate designed, through the software, to monitor drops of liquid as they pass through the slot. A beam of infrared light passes through the slot continuously. If anything blocks that beam, the software interprets that as a drop. The result is either a drop, or no drop.

More accurately, when you calibrate a Vernier Drop Counter, you are determining the drop size for titrants as they are delivered from the reservoir tip. The drop size will vary depending on the composition of the titrant, the intermolecular forces between the molecules of the titrant and the plastic in the tip, the height of liquid in the reservoir, the rate at which the drops are allowed to flow out of the tip, and even the temperature. The tip is made of formed plastic. The drop size will also vary with different tips.

For the absolute best results, different titrants should be calibrated individually. For aqueous solutions with concentrations of 1 M or less, a reasonable calibration of the Vernier Drop Counter can done with distilled water at room temperature. While the software is running, drops are allowed to pass through the slot in the Drop Counter, collected in a graduated cylinder, and counted by the software. A drip rate of around 1 drop every 2 seconds is recommended to allow the drops to reach their maximum size. (This also allows the pH, conductivity sensor, or oxidation/reduction potential sensor time to react between drops.) It is recommended that the reagent reservoir be filled to 60 mL and a total volume of just under 10 mL be collected during the calibration. This ensures that the pressure on the drops at the tip is reasonably constant. The larger the volume of titrant used and number of drops, the more accurate the value for the drop size.

Once a prescribed volume of water is collected, the valve is closed, the volume is entered into the software, and the value of drops/mL is calculated automatically. This value can be written on the reservoir system (reagent reservoir, valves, and tip) for future use. All Vernier software allows the user to enter the known value without having to completely carry out the calibration again.

Vernier Tip: Check out our Thingiverse webpage for a free, 3D-printable design for a widget that centers the reagent reservoir system above a Drop Counter. It comes in handy for aligning the tip to ensure the drops are detected by the Drop Counter.

3D-printed burette-centering widget

Go to top