The Ink Is Still Wet: Using colorimetry to identify an unknown ink

Identify the ink on the ransom note to narrow down the suspects.

The Ink is Still Wet

OBJECTIVES

- Identify an unknown ink by its light absorbance characteristics.
- Measure a solution's absorbance of different colors (wavelengths) of light.

MATERIALS

Chromebook, computer, or mobile device Graphical Analysis Go Direct Colorimeter 6 cuvettes colored wax pencil distilled water 5 dropper bottles, with 10 mL samples of different diluted black inks 1 dropper bottle, with 10 mL of diluted unknown black ink lint-free tissues

PROCEDURE

Caution: Obtain and wear goggles during this experiment. Be careful not to ingest any solution or spill any on your skin. Inform your teacher immediately in the event of an accident.

- Prepare the blank, each of the five standards, and the unknown for analysis.
 a. Rinse an empty cuvette twice with about 1 mL of distilled water.
 - b. Use the colored wax pencil to write a zero on the lid of the cuvette.
 - c. Fill the cuvette 3/4 full with distilled water. Seal the cuvette with the lid. Dry the outside of the cuvette with a tissue.
 - d. Repeat Steps 1a–1c, using the five standard solutions and the unknown, rather than distilled water, and labeling the lids of the cuvettes appropriately (1 through 5 for the standard solutions and 6 for the unknown).

Remember the following:

- All cuvettes should be clean and dry on the outside.
- Handle a cuvette only by the top edge or ribbed sides, not the transparent sides.
- All solutions should be free of bubbles.
- Label the lid of the cuvette so the label does not interfere with the beam of light.
- 2. Launch Graphical Analysis. Connect the Go Direct Colorimeter to your Chromebook, computer, or mobile device.

- 3. Set up the data-collection mode.
 - a. Click or tap Mode to open Data Collection Settings.
 - b. Change Mode to Event Based.
 - c. Enter **Sample** as the Name and leave the Units field blank. Click or tap Done.
- 4. Calibrate the colorimeter.
 - a. Open the colorimeter lid. Place the blank (cuvette 0, containing distilled water) in the cuvette slot of the colorimeter. Make sure that one of the transparent faces of the cuvette is pointing toward the white reference mark. Close the lid of the colorimeter.
 - b. Press the < or > button on the colorimeter to select a wavelength of 635 nm (Red).
 - c. Press the CAL button until the red LED begins to flash. Then release the CAL button. When the LED stops flashing, the calibration is complete.
- 5. You are now ready to collect absorbance data at 635 nm for the solutions.
 - a. Click or tap Collect to start data collection.
 - b. Place cuvette 1 in the colorimeter, with the cuvette clean, dry, and with a transparent face pointing toward the reference mark.
 - c. After closing the lid, wait for the absorbance value displayed on the monitor to stabilize, then click or tap Keep.
 - d. Enter the sample number (from the lid) and click or tap Keep Point.
 - e. Remove the cuvette from the colorimeter.
 - f. Repeat Steps 5b–5e for the remaining samples in cuvettes 2 through 6.
- 6. Click or tap Stop to stop data collection when you have collected data for all the samples.
- 7. In your Evidence Record, write down the absorbance values displayed in the data table.
- Measure the absorbance of each solution at the three other wavelengths (or colors) that the colorimeter can measure. Each new run will be automatically saved as the new data set.
 a. Repeat Steps 4–7 for the 565 nm (green) wavelength setting on the colorimeter.
 - b. Repeat Steps 4–7 for the 470 nm (blue) wavelength setting on the colorimeter.
 - c. Repeat Steps 4–7 for the 430 nm (violet) wavelength setting on the colorimeter.
- 9. Discard the solutions as directed by your teacher.

EVIDENCE RECORD

Sample	Type of Ink; Appearance in Alcohol	Absorbance at 635 nm	Absorbance at 565 nm	Absorbance at 470 nm	Absorbance at 430 nm
1					
2					
3					
4				S	
5		•			
6 (unknown)			K		

Unknown is most likely

CASE ANALYSIS

- 1. How did you identify the unknown?
- 2. Why did the inks show different absorbance patterns if they all appeared to be the same color?
- 3. Do you think you would have seen the same large variations in absorbance if all the samples had been red ink or all the samples had been blue ink instead of black? Why or why not?

The Ink Is Still Wet

OVERVIEW

- Estimated Time: one 50–60 minute class period
- This experiment utilizes colorimetry to identify inks as unique mixtures of pigments.

NEXT GENERATION SCIENCE STANDARDS (NGSS)

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Using mathematics and computational thinking	HS-PS4-4	Cause and effect

TIPS

- 1. In the Electronic Resources you will find PDF and word-processing files of each student experiment—one for each supported data-collection software or app (Logger *Pro*, Graphical Analysis, and LabQuest App). Deliver to your students the version that supports the software and hardware they will use. Sign in to your account at vernier.com/account to access the Electronic Resources. See Appendix A for more information.
- 2. Make sure that all solution preparation and cuvette filling is done before beginning the experiment.
- 3. Before assigning the experiment, you may want to review the spectrum of visible light and the concept of absorbance of light. Remind students that different colors are actually different wavelengths in the spectrum and that an object appears to be a specific color because it absorbs all wavelengths of light except that specific color. It may also be helpful to review the difference between colors of light (white light is a combination of all wavelengths, and darkness is the absence of all wavelengths) and colors of pigment (white pigment reflects all wavelengths, and black pigment absorbs all wavelengths).
- 4. The cuvette must be from 55% to 100% full in order to get a valid absorbance reading. If students fill the cuvette 3/4 full, as described in the procedure, they should easily be in this range. To avoid spilling solution in the cuvette slot, remind students not to fill the cuvette to the brim.

LAB PREPARATION

- 1. Use rubber gloves to prepare all the ink solutions.
- 2. Use five different brands of pens (e.g., Pilot[®], Bic[®], Zebra[®]) and/or different types of pens (e.g., erasable ink, archival ink) for the known solutions. Use one of the same five for the unknown solution.

Instructor 5

- 3. To prepare each ink solution, disassemble the pen (or purchase a refill ink cartridge), cut the ink cylinder, and put the cylinder parts into 300 mL of isopropyl alcohol (rubbing alcohol) and allow the ink to dissolve in it. Each ink will dissolve at a different rate, so the soak times will vary.
- 4. To prepare each of your final ink solutions, add 100 mL of the ink/alcohol solution to 400 mL of distilled water. Mix the solution thoroughly before adding to each of the dropper bottles. Repeat for each of the ink solutions that will be tested. The six different diluted samples should look similar. Of the black inks used to obtain the sample data, the Bic, Pentel[®], and Zebra had a purplish hue and were indistinguishable from one another when diluted; the Pilot ink was black in dilution; ink from the erasable Paper Mate[®] was blue in dilution. It is important that the maximum absorbance value at any wavelength be between 0.9 and 1.0. Dilute samples accordingly.

BACKGROUND INFORMATION

Colorimeters sold by Vernier work by passing a beam of a single wavelength of light through the sample and then measuring how much of that light is transmitted. The colorimeter can then calculate how much of that wavelength was absorbed by the sample. This technique can help identify materials because different materials absorb different amounts of light at different wavelengths.

Most inks are mixtures of different-colored pigments. When we separate those mixtures, we can define their parts, and the percentages of the parts allow us to identify the original ink. Many companies have their own formulas for the inks that they use. Each pigment has distinctive spectral properties. We can see those properties when we examine the solutions in light of different wavelengths.

RESOURCES

The following website contains information about the properties of different inks:

http://chemistry.about.com/library/weekly/aa121602a.htm

MODIFICATIONS

More advanced students may want to explore the absorbance of different-colored inks (red, blue, green) to see if the variations in absorbance pattern are as great as they are for black inks.

SAMPLE DATA

Sample	Type of Ink; Appearance in Alcohol	Absorbance at 635 nm	Absorbance at 565 nm	Absorbance at 470 nm	Absorbance at 430 nm
1	Pilot gel ink; black	0.408	0.498	0.539	0.492
2	Paper Mate erasable; blue	0.951	0.986	0.958	0.926
3	Bic; purple	0.278	0.681	0.433	0.402
4	Pentel; purple	0.111	0.355	0.217	0.182
5	Zebra; purple	0.181	0.379	0.262	0.241
6	Unknown; purple	0.288	0.673	0.437	0.395

Unknown is most likely <u>Sample 3, Bic</u>

5

CASE ANALYSIS ANSWERS

- 1. Find the set of absorbances that most closely matched those of the unknown.
- 2. Even though the inks are the same color, the amount of colorant(s) and the kind of colorant(s) present may vary, causing the absorbance readings to vary.
- 3. The variations in absorbance patterns would probably have been smaller if we had used red or blue ink because those inks tend to be mixtures of fewer pigments.