Experiencing Bluetooth® issues with Go Direct® sensors on Chromebooks? Get help here.

Experiments​

Determining the Enthalpy of a Chemical Reaction

Experiment #13 from Advanced Chemistry with Vernier

Education Level
High School
College

Introduction

All chemical reactions involve an exchange of heat energy; therefore, it is tempting to plan to follow a reaction by measuring the enthalpy change (∆H). However, it is often not possible to directly measure the heat energy change of the reactants and products (the system). We can measure the heat change that occurs in the surroundings by monitoring temperature changes. If we conduct a reaction between two substances in aqueous solution, then the enthalpy of the reaction can be indirectly calculated with the following equation.

q = {C_p} \times m \times \Delta T

The term q represents the heat energy that is gained or lost. Cp is the specific heat of water, m is the mass of water, and ∆T is the temperature change of the reaction mixture. The specific heat and mass of water are used because water will either gain or lose heat energy in a reaction that occurs in aqueous solution. Furthermore, according to a principle known as Hess’s law, the enthalpy changes of a series of reactions can be combined to calculate the enthalpy change of a reaction that is the sum of the components of the series.

In this experiment, you will measure the temperature change of two reactions, and use Hess’s law to determine the enthalpy change, ΔH of a third reaction. You will use a Styrofoam cup nested in a beaker as a calorimeter. For purposes of this experiment, you may assume that the heat loss to the calorimeter and the surrounding air is negligible.

Objectives

In this experiment, you will

  • Use Hess’s law to determine the enthalpy change of the reaction between aqueous ammonia and aqueous hydrochloric acid.
  • Compare your calculated enthalpy change with the experimental results.

Sensors and Equipment

This experiment features the following sensors and equipment. Additional equipment may be required.

Ready to Experiment?

Ask an Expert

Get answers to your questions about how to teach this experiment with our support team.

Purchase the Lab Book

This experiment is #13 of Advanced Chemistry with Vernier. The experiment in the book includes student instructions as well as instructor information for set up, helpful hints, and sample graphs and data.

Learn More

SAVE/SHARE YOUR CART