Introduction

In electrochemistry, a voltaic cell is a specially prepared system in which an oxidation-reduction reaction occurs spontaneously. This spontaneous reaction produces an easily measured electrical potential. Voltaic cells have a variety of uses.

In this experiment, you will prepare a variety of semi-microscale voltaic cells in a 24-well test plate. A voltaic cell is constructed by using two metal electrodes and solutions of their respective salts (the electrolyte component of the cell) with known molar concentrations. In Parts I and II of this experiment, you will use a Voltage Probe to measure the potential of a voltaic cell with copper and lead electrodes. You will then test two voltaic cells that have unknown metal electrodes and, through careful measurements of the cell potentials, identify the unknown metals. In Part III of the experiment, you will measure the potential of a special type of voltaic cell called a concentration cell. In the first concentration cell, you will observe how a voltaic cell can maintain a spontaneous redox reaction with identical copper metal electrodes, but different electrolyte concentrations. You will then measure the potential of a second concentration cell and use the Nernst equation to calculate the solubility product constant, Ksp, for lead iodide, PbI2.

Objectives

In this experiment, you will

  • Prepare a Cu-Pb voltaic cell and measure its potential.
  • Test two voltaic cells that use unknown metal electrodes and identify the metals.
  • Prepare a copper concentration cell and measure its potential.
  • Prepare a lead concentration cell and measure its potential.
  • Use the Nernst equation to calculate the Ksp of PbI2.